|
import gradio as gr
|
|
from huggingface_hub import HfApi, HfFolder, hf_hub_download
|
|
import os
|
|
from pathlib import Path
|
|
import shutil
|
|
import gc
|
|
import re
|
|
import urllib.parse
|
|
|
|
|
|
def get_token():
|
|
try:
|
|
token = HfFolder.get_token()
|
|
except Exception:
|
|
token = ""
|
|
return token
|
|
|
|
|
|
def set_token(token):
|
|
try:
|
|
HfFolder.save_token(token)
|
|
except Exception:
|
|
print(f"Error: Failed to save token.")
|
|
|
|
|
|
def get_user_agent():
|
|
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
|
|
|
|
|
def is_repo_exists(repo_id: str, repo_type: str="model"):
|
|
hf_token = get_token()
|
|
api = HfApi(token=hf_token)
|
|
try:
|
|
if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True
|
|
else: return False
|
|
except Exception as e:
|
|
print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}")
|
|
return True
|
|
|
|
|
|
MODEL_TYPE_CLASS = {
|
|
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
|
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
|
"diffusers:FluxPipeline": "FLUX",
|
|
}
|
|
|
|
|
|
def get_model_type(repo_id: str):
|
|
hf_token = get_token()
|
|
api = HfApi(token=hf_token)
|
|
lora_filename = "pytorch_lora_weights.safetensors"
|
|
diffusers_filename = "model_index.json"
|
|
default = "SDXL"
|
|
try:
|
|
if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
|
|
if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
|
|
model = api.model_info(repo_id=repo_id, token=hf_token)
|
|
tags = model.tags
|
|
for tag in tags:
|
|
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
|
except Exception:
|
|
return default
|
|
return default
|
|
|
|
|
|
def list_sub(a, b):
|
|
return [e for e in a if e not in b]
|
|
|
|
|
|
def is_repo_name(s):
|
|
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
|
|
|
|
|
def split_hf_url(url: str):
|
|
try:
|
|
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.safetensors)(?:\?download=true)?$', url)[0])
|
|
if len(s) < 4: return "", "", "", ""
|
|
repo_id = s[1]
|
|
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
|
|
filename = urllib.parse.unquote(s[3])
|
|
return repo_id, filename, subfolder, repo_type
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
|
|
hf_token = get_token()
|
|
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
|
try:
|
|
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
except Exception as e:
|
|
print(f"Failed to download: {e}")
|
|
|
|
|
|
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
|
|
hf_token = get_token()
|
|
url = url.strip()
|
|
if "drive.google.com" in url:
|
|
original_dir = os.getcwd()
|
|
os.chdir(directory)
|
|
os.system(f"gdown --fuzzy {url}")
|
|
os.chdir(original_dir)
|
|
elif "huggingface.co" in url:
|
|
url = url.replace("?download=true", "")
|
|
if "/blob/" in url:
|
|
url = url.replace("/blob/", "/resolve/")
|
|
|
|
if hf_token:
|
|
download_hf_file(directory, url)
|
|
|
|
else:
|
|
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
|
elif "civitai.com" in url:
|
|
if "?" in url:
|
|
url = url.split("?")[0]
|
|
if civitai_api_key:
|
|
url = url + f"?token={civitai_api_key}"
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
|
else:
|
|
print("You need an API key to download Civitai models.")
|
|
else:
|
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
|
|
|
|
|
def get_local_model_list(dir_path):
|
|
model_list = []
|
|
valid_extensions = ('.safetensors')
|
|
for file in Path(dir_path).glob("**/*.*"):
|
|
if file.is_file() and file.suffix in valid_extensions:
|
|
file_path = str(file)
|
|
model_list.append(file_path)
|
|
return model_list
|
|
|
|
|
|
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
|
|
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
|
print(f"Use HF Repo: {url}")
|
|
new_file = url
|
|
elif not "http" in url and Path(url).exists():
|
|
print(f"Use local file: {url}")
|
|
new_file = url
|
|
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
|
print(f"File to download alreday exists: {url}")
|
|
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
|
else:
|
|
print(f"Start downloading: {url}")
|
|
before = get_local_model_list(temp_dir)
|
|
try:
|
|
download_thing(temp_dir, url.strip(), civitai_key)
|
|
except Exception:
|
|
print(f"Download failed: {url}")
|
|
return ""
|
|
after = get_local_model_list(temp_dir)
|
|
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
|
if not new_file:
|
|
print(f"Download failed: {url}")
|
|
return ""
|
|
print(f"Download completed: {url}")
|
|
return new_file
|
|
|