|
import torch
|
|
import numpy as np
|
|
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
|
|
def calculate_shift(
|
|
image_seq_len,
|
|
base_seq_len: int = 256,
|
|
max_seq_len: int = 4096,
|
|
base_shift: float = 0.5,
|
|
max_shift: float = 1.16,
|
|
):
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
|
b = base_shift - m * base_seq_len
|
|
mu = image_seq_len * m + b
|
|
return mu
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
@torch.inference_mode()
|
|
def flux_pipe_call_that_returns_an_iterable_of_images(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 28,
|
|
timesteps: List[int] = None,
|
|
guidance_scale: float = 3.5,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
max_sequence_length: int = 512,
|
|
good_vae: Optional[Any] = None,
|
|
):
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._joint_attention_kwargs = joint_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
|
device = self._execution_device
|
|
|
|
|
|
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
|
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
lora_scale=lora_scale,
|
|
)
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4
|
|
latents, latent_image_ids = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
|
image_seq_len = latents.shape[1]
|
|
mu = calculate_shift(
|
|
image_seq_len,
|
|
self.scheduler.config.base_image_seq_len,
|
|
self.scheduler.config.max_image_seq_len,
|
|
self.scheduler.config.base_shift,
|
|
self.scheduler.config.max_shift,
|
|
)
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
timesteps,
|
|
sigmas,
|
|
mu=mu,
|
|
)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
|
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
|
|
|
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
|
|
|
noise_pred = self.transformer(
|
|
hidden_states=latents,
|
|
timestep=timestep / 1000,
|
|
guidance=guidance,
|
|
pooled_projections=pooled_prompt_embeds,
|
|
encoder_hidden_states=prompt_embeds,
|
|
txt_ids=text_ids,
|
|
img_ids=latent_image_ids,
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
|
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
|
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
|
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
|
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
|
image = good_vae.decode(latents, return_dict=False)[0]
|
|
self.maybe_free_model_hooks()
|
|
torch.cuda.empty_cache()
|
|
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|