|
import gradio as gr
|
|
import json
|
|
import logging
|
|
import torch
|
|
from PIL import Image
|
|
import spaces
|
|
from diffusers import DiffusionPipeline
|
|
import copy
|
|
import random
|
|
import time
|
|
|
|
|
|
with open('loras.json', 'r') as f:
|
|
loras = json.load(f)
|
|
|
|
|
|
models = ["camenduru/FLUX.1-dev-diffusers", "black-forest-labs/FLUX.1-schnell",
|
|
"sayakpaul/FLUX.1-merged", "John6666/blue-pencil-flux1-v001-fp8-flux"]
|
|
base_model = models[0]
|
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
|
MAX_SEED = 2**32-1
|
|
|
|
class calculateDuration:
|
|
def __init__(self, activity_name=""):
|
|
self.activity_name = activity_name
|
|
|
|
def __enter__(self):
|
|
self.start_time = time.time()
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.end_time = time.time()
|
|
self.elapsed_time = self.end_time - self.start_time
|
|
if self.activity_name:
|
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
|
else:
|
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
|
|
|
|
|
def update_selection(evt: gr.SelectData, width, height):
|
|
selected_lora = loras[evt.index]
|
|
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
|
lora_repo = selected_lora["repo"]
|
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
|
if "aspect" in selected_lora:
|
|
if selected_lora["aspect"] == "portrait":
|
|
width = 768
|
|
height = 1024
|
|
elif selected_lora["aspect"] == "landscape":
|
|
width = 1024
|
|
height = 768
|
|
return (
|
|
gr.update(placeholder=new_placeholder),
|
|
updated_text,
|
|
evt.index,
|
|
width,
|
|
height,
|
|
)
|
|
|
|
@spaces.GPU(duration=70)
|
|
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
|
pipe.to("cuda")
|
|
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
|
with calculateDuration("Generating image"):
|
|
|
|
image = pipe(
|
|
prompt=f"{prompt} {trigger_word}",
|
|
num_inference_steps=steps,
|
|
guidance_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
generator=generator,
|
|
joint_attention_kwargs={"scale": lora_scale},
|
|
).images[0]
|
|
return image
|
|
|
|
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
|
lora_scale, lora_repo, lora_weights, lora_trigger, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
if selected_index is not None and not lora_repo:
|
|
selected_lora = loras[selected_index]
|
|
lora_path = selected_lora["repo"]
|
|
trigger_word = selected_lora["trigger_word"]
|
|
else:
|
|
selected_lora = loras[0]
|
|
lora_path = lora_repo
|
|
trigger_word = lora_trigger
|
|
|
|
|
|
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
|
if selected_index is None and not lora_repo:
|
|
pass
|
|
elif lora_weights:
|
|
pipe.load_lora_weights(lora_path, weight_name=lora_weights)
|
|
elif "weights" in selected_lora:
|
|
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
|
else:
|
|
pipe.load_lora_weights(lora_path)
|
|
|
|
|
|
with calculateDuration("Randomizing seed"):
|
|
if randomize_seed:
|
|
seed = random.randint(0, MAX_SEED)
|
|
|
|
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
|
pipe.to("cpu")
|
|
if selected_index is not None or lora_repo: pipe.unload_lora_weights()
|
|
return image, seed
|
|
|
|
run_lora.zerogpu = True
|
|
|
|
def get_repo_safetensors(repo_id: str):
|
|
from huggingface_hub import HfApi
|
|
api = HfApi()
|
|
try:
|
|
if " " in repo_id or not api.repo_exists(repo_id): return gr.update(value="", choices=[])
|
|
files = api.list_repo_files(repo_id=repo_id)
|
|
except Exception as e:
|
|
print(f"Error: Failed to get {repo_id}'s info. ")
|
|
print(e)
|
|
return gr.update(choices=[])
|
|
files = [f for f in files if f.endswith(".safetensors")]
|
|
if len(files) == 0: return gr.update(value="", choices=[])
|
|
else: return gr.update(value=files[0], choices=files)
|
|
|
|
def change_base_model(repo_id: str):
|
|
from huggingface_hub import HfApi
|
|
global pipe
|
|
api = HfApi()
|
|
try:
|
|
if " " in repo_id or not api.repo_exists(repo_id): return
|
|
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
css = '''
|
|
#gen_btn{height: 100%}
|
|
#title{text-align: center}
|
|
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
|
#title img{width: 100px; margin-right: 0.5em}
|
|
#gallery .grid-wrap{height: 10vh}
|
|
'''
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
title = gr.HTML(
|
|
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
|
|
elem_id="title",
|
|
)
|
|
selected_index = gr.State(None)
|
|
with gr.Row():
|
|
with gr.Column(scale=3):
|
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
|
with gr.Column(scale=1, elem_id="gen_column"):
|
|
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
|
with gr.Row():
|
|
with gr.Column(scale=3):
|
|
selected_info = gr.Markdown("")
|
|
gallery = gr.Gallery(
|
|
[(item["image"], item["title"]) for item in loras],
|
|
label="LoRA Gallery",
|
|
allow_preview=False,
|
|
columns=3,
|
|
elem_id="gallery"
|
|
)
|
|
|
|
with gr.Column(scale=4):
|
|
result = gr.Image(label="Generated Image")
|
|
|
|
with gr.Row():
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
with gr.Column():
|
|
|
|
with gr.Row():
|
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
|
|
|
with gr.Row():
|
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
|
|
|
with gr.Row():
|
|
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
|
|
|
with gr.Row():
|
|
lora_repo = gr.Dropdown(label="LoRA Repo", choices=[], info="Input LoRA Repo ID", value="", allow_custom_value=True)
|
|
lora_weights = gr.Dropdown(label="LoRA Filename", choices=[], info="Optional", value="", allow_custom_value=True)
|
|
lora_trigger = gr.Textbox(label="LoRA Trigger Prompt", value="")
|
|
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
|
|
|
|
with gr.Row():
|
|
model_name = gr.Dropdown(label="Base Model", choices=models, value=models[0], allow_custom_value=True)
|
|
|
|
gallery.select(
|
|
update_selection,
|
|
inputs=[width, height],
|
|
outputs=[prompt, selected_info, selected_index, width, height]
|
|
)
|
|
|
|
gr.on(
|
|
triggers=[generate_button.click, prompt.submit],
|
|
fn=run_lora,
|
|
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
|
lora_scale, lora_repo, lora_weights, lora_trigger],
|
|
outputs=[result, seed]
|
|
)
|
|
|
|
lora_repo.change(get_repo_safetensors, [lora_repo], [lora_weights])
|
|
model_name.change(change_base_model, [model_name], None)
|
|
|
|
|
|
app.queue()
|
|
app.launch() |