John6666 commited on
Commit
4c19db8
1 Parent(s): 5e404f6

Upload 13 files

Browse files
Files changed (6) hide show
  1. app -nonyieldlast.py +696 -0
  2. app.py +90 -63
  3. mod.py +12 -1
  4. modutils.py +11 -0
  5. requirements.txt +2 -1
  6. tagger/tagger.py +18 -23
app -nonyieldlast.py ADDED
@@ -0,0 +1,696 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import json
4
+ import logging
5
+ import torch
6
+ from PIL import Image
7
+ from diffusers import DiffusionPipeline
8
+ from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
9
+ from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
10
+ import copy
11
+ import random
12
+ import time
13
+
14
+
15
+ from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists,
16
+ description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras,
17
+ get_trigger_word, enhance_prompt, deselect_lora, num_cns, set_control_union_image,
18
+ get_control_union_mode, set_control_union_mode, get_control_params)
19
+ from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
20
+ download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
21
+ update_loras, get_t2i_model_info)
22
+ from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
23
+ from tagger.fl2flux import predict_tags_fl2_flux
24
+
25
+
26
+ dtype = torch.bfloat16
27
+ #dtype = torch.float8_e4m3fn
28
+ # Initialize the base model
29
+ base_model = models[0]
30
+ controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
31
+ #controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
32
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)
33
+ controlnet_union = None
34
+ controlnet = None
35
+ last_model = models[0]
36
+ last_cn_on = False
37
+
38
+ # https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
39
+ # https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
40
+ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
41
+ global pipe
42
+ global controlnet_union
43
+ global controlnet
44
+ global last_model
45
+ global last_cn_on
46
+ global dtype
47
+ try:
48
+ if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
49
+ if cn_on:
50
+ #progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
51
+ print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
52
+ clear_cache()
53
+ controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
54
+ controlnet = FluxMultiControlNetModel([controlnet_union])
55
+ pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
56
+ last_model = repo_id
57
+ last_cn_on = cn_on
58
+ #progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
59
+ print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
60
+ else:
61
+ #progress(0, desc=f"Loading model: {repo_id}")
62
+ print(f"Loading model: {repo_id}")
63
+ clear_cache()
64
+ pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
65
+ last_model = repo_id
66
+ last_cn_on = cn_on
67
+ #progress(1, desc=f"Model loaded: {repo_id}")
68
+ print(f"Model loaded: {repo_id}")
69
+ except Exception as e:
70
+ print(f"Model load Error: {e}")
71
+ raise gr.Error(f"Model load Error: {e}") from e
72
+ return gr.update(visible=True)
73
+
74
+ change_base_model.zerogpu = True
75
+
76
+ # Load LoRAs from JSON file
77
+ with open('loras.json', 'r') as f:
78
+ loras = json.load(f)
79
+
80
+ MAX_SEED = 2**32-1
81
+
82
+ class calculateDuration:
83
+ def __init__(self, activity_name=""):
84
+ self.activity_name = activity_name
85
+
86
+ def __enter__(self):
87
+ self.start_time = time.time()
88
+ return self
89
+
90
+ def __exit__(self, exc_type, exc_value, traceback):
91
+ self.end_time = time.time()
92
+ self.elapsed_time = self.end_time - self.start_time
93
+ if self.activity_name:
94
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
95
+ else:
96
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
97
+
98
+ def update_selection(evt: gr.SelectData, width, height):
99
+ selected_lora = loras[evt.index]
100
+ new_placeholder = f"Type a prompt for {selected_lora['title']}"
101
+ lora_repo = selected_lora["repo"]
102
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
103
+ if "aspect" in selected_lora:
104
+ if selected_lora["aspect"] == "portrait":
105
+ width = 768
106
+ height = 1024
107
+ elif selected_lora["aspect"] == "landscape":
108
+ width = 1024
109
+ height = 768
110
+ else:
111
+ width = 1024
112
+ height = 1024
113
+ return (
114
+ gr.update(placeholder=new_placeholder),
115
+ updated_text,
116
+ evt.index,
117
+ width,
118
+ height,
119
+ )
120
+
121
+ @spaces.GPU(duration=70)
122
+ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
123
+ global pipe
124
+ global controlnet
125
+ global controlnet_union
126
+ try:
127
+ pipe.to("cuda")
128
+ generator = torch.Generator(device="cuda").manual_seed(seed)
129
+
130
+ with calculateDuration("Generating image"):
131
+ # Generate image
132
+ modes, images, scales = get_control_params()
133
+ if not cn_on or len(modes) == 0:
134
+ progress(0, desc="Start Inference.")
135
+ image = pipe(
136
+ prompt=prompt_mash,
137
+ num_inference_steps=steps,
138
+ guidance_scale=cfg_scale,
139
+ width=width,
140
+ height=height,
141
+ generator=generator,
142
+ joint_attention_kwargs={"scale": lora_scale},
143
+ ).images[0]
144
+ else:
145
+ progress(0, desc="Start Inference with ControlNet.")
146
+ if controlnet is not None: controlnet.to("cuda")
147
+ if controlnet_union is not None: controlnet_union.to("cuda")
148
+ image = pipe(
149
+ prompt=prompt_mash,
150
+ control_image=images,
151
+ control_mode=modes,
152
+ num_inference_steps=steps,
153
+ guidance_scale=cfg_scale,
154
+ width=width,
155
+ height=height,
156
+ controlnet_conditioning_scale=scales,
157
+ generator=generator,
158
+ joint_attention_kwargs={"scale": lora_scale},
159
+ ).images[0]
160
+ except Exception as e:
161
+ print(e)
162
+ raise gr.Error(f"Inference Error {e}") from e
163
+ return image
164
+
165
+ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
166
+ lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
167
+ global pipe
168
+ if selected_index is None and not is_valid_lora(lora_json):
169
+ gr.Info("LoRA isn't selected.")
170
+ # raise gr.Error("You must select a LoRA before proceeding.")
171
+ progress(0, desc="Preparing Inference.")
172
+
173
+ prompt_mash = prompt
174
+ if is_valid_lora(lora_json):
175
+ with calculateDuration("Loading LoRA weights"):
176
+ fuse_loras(pipe, lora_json)
177
+ trigger_word = get_trigger_word(lora_json)
178
+ prompt_mash = f"{prompt} {trigger_word}"
179
+ if selected_index is not None:
180
+ selected_lora = loras[selected_index]
181
+ lora_path = selected_lora["repo"]
182
+ trigger_word = selected_lora["trigger_word"]
183
+ if(trigger_word):
184
+ if "trigger_position" in selected_lora:
185
+ if selected_lora["trigger_position"] == "prepend":
186
+ prompt_mash = f"{trigger_word} {prompt}"
187
+ else:
188
+ prompt_mash = f"{prompt} {trigger_word}"
189
+ else:
190
+ prompt_mash = f"{trigger_word} {prompt}"
191
+ else:
192
+ prompt_mash = prompt
193
+ # Load LoRA weights
194
+ with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
195
+ if "weights" in selected_lora:
196
+ pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
197
+ else:
198
+ pipe.load_lora_weights(lora_path)
199
+
200
+ # Set random seed for reproducibility
201
+ with calculateDuration("Randomizing seed"):
202
+ if randomize_seed:
203
+ seed = random.randint(0, MAX_SEED)
204
+
205
+ progress(0, desc="Running Inference.")
206
+
207
+ image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
208
+ if is_valid_lora(lora_json):
209
+ pipe.unfuse_lora()
210
+ pipe.unload_lora_weights()
211
+ if selected_index is not None: pipe.unload_lora_weights()
212
+ pipe.to("cpu")
213
+ if controlnet is not None: controlnet.to("cpu")
214
+ if controlnet_union is not None: controlnet_union.to("cpu")
215
+ clear_cache()
216
+ return image, seed
217
+
218
+ def get_huggingface_safetensors(link):
219
+ split_link = link.split("/")
220
+ if(len(split_link) == 2):
221
+ model_card = ModelCard.load(link)
222
+ base_model = model_card.data.get("base_model")
223
+ print(base_model)
224
+ if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
225
+ raise Exception("Not a FLUX LoRA!")
226
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
227
+ trigger_word = model_card.data.get("instance_prompt", "")
228
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
229
+ fs = HfFileSystem()
230
+ try:
231
+ list_of_files = fs.ls(link, detail=False)
232
+ for file in list_of_files:
233
+ if(file.endswith(".safetensors")):
234
+ safetensors_name = file.split("/")[-1]
235
+ if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
236
+ image_elements = file.split("/")
237
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
238
+ except Exception as e:
239
+ print(e)
240
+ gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
241
+ raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
242
+ return split_link[1], link, safetensors_name, trigger_word, image_url
243
+
244
+ def check_custom_model(link):
245
+ if(link.startswith("https://")):
246
+ if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
247
+ link_split = link.split("huggingface.co/")
248
+ return get_huggingface_safetensors(link_split[1])
249
+ else:
250
+ return get_huggingface_safetensors(link)
251
+
252
+ def add_custom_lora(custom_lora):
253
+ global loras
254
+ if(custom_lora):
255
+ try:
256
+ title, repo, path, trigger_word, image = check_custom_model(custom_lora)
257
+ print(f"Loaded custom LoRA: {repo}")
258
+ card = f'''
259
+ <div class="custom_lora_card">
260
+ <span>Loaded custom LoRA:</span>
261
+ <div class="card_internal">
262
+ <img src="{image}" />
263
+ <div>
264
+ <h3>{title}</h3>
265
+ <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
266
+ </div>
267
+ </div>
268
+ </div>
269
+ '''
270
+ existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
271
+ if(not existing_item_index):
272
+ new_item = {
273
+ "image": image,
274
+ "title": title,
275
+ "repo": repo,
276
+ "weights": path,
277
+ "trigger_word": trigger_word
278
+ }
279
+ print(new_item)
280
+ existing_item_index = len(loras)
281
+ loras.append(new_item)
282
+
283
+ return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
284
+ except Exception as e:
285
+ gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
286
+ return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
287
+ else:
288
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
289
+
290
+ def remove_custom_lora():
291
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
292
+
293
+ run_lora.zerogpu = True
294
+
295
+ css = '''
296
+ #gen_btn{height: 100%}
297
+ #title{text-align: center}
298
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
299
+ #title img{width: 100px; margin-right: 0.5em}
300
+ #gallery .grid-wrap{height: 10vh}
301
+ #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
302
+ .card_internal{display: flex;height: 100px;margin-top: .5em}
303
+ .card_internal img{margin-right: 1em}
304
+ .styler{--form-gap-width: 0px !important}
305
+ #progress{height:30px}
306
+ #progress .generating{display:none}
307
+ .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
308
+ .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
309
+ #model-info {text-align: center; !important}
310
+ '''
311
+ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
312
+ with gr.Tab("FLUX LoRA the Explorer"):
313
+ title = gr.HTML(
314
+ """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
315
+ elem_id="title",
316
+ )
317
+ selected_index = gr.State(None)
318
+ with gr.Row():
319
+ with gr.Column(scale=3):
320
+ with gr.Group():
321
+ with gr.Accordion("Generate Prompt from Image", open=False):
322
+ tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
323
+ with gr.Accordion(label="Advanced options", open=False):
324
+ tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
325
+ tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
326
+ neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
327
+ v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2, visible=False)
328
+ v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2, visible=False)
329
+ v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
330
+ tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
331
+ tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
332
+ prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt")
333
+ prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary")
334
+ with gr.Column(scale=1, elem_id="gen_column"):
335
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
336
+ with gr.Row():
337
+ with gr.Column():
338
+ selected_info = gr.Markdown("")
339
+ gallery = gr.Gallery(
340
+ [(item["image"], item["title"]) for item in loras],
341
+ label="LoRA Gallery",
342
+ allow_preview=False,
343
+ columns=3,
344
+ elem_id="gallery"
345
+ )
346
+ with gr.Group():
347
+ custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
348
+ gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
349
+ custom_lora_info = gr.HTML(visible=False)
350
+ custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
351
+ deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
352
+ with gr.Column():
353
+ result = gr.Image(label="Generated Image", format="png", show_share_button=False)
354
+ with gr.Group():
355
+ model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
356
+ model_info = gr.Markdown(elem_id="model-info")
357
+ with gr.Row():
358
+ with gr.Accordion("Advanced Settings", open=False):
359
+ with gr.Column():
360
+ with gr.Row():
361
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
362
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
363
+ with gr.Row():
364
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
365
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
366
+ with gr.Row():
367
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
368
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
369
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=-3, maximum=3, step=0.01, value=0.95)
370
+ with gr.Accordion("External LoRA", open=True):
371
+ with gr.Column():
372
+ lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
373
+ lora_repo = [None] * num_loras
374
+ lora_weights = [None] * num_loras
375
+ lora_trigger = [None] * num_loras
376
+ lora_wt = [None] * num_loras
377
+ lora_info = [None] * num_loras
378
+ lora_copy = [None] * num_loras
379
+ lora_md = [None] * num_loras
380
+ lora_num = [None] * num_loras
381
+ with gr.Row():
382
+ for i in range(num_loras):
383
+ with gr.Column():
384
+ lora_repo[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Repo", choices=get_all_lora_tupled_list(), info="Input LoRA Repo ID", value="", allow_custom_value=True)
385
+ with gr.Row():
386
+ lora_weights[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Filename", choices=[], info="Optional", value="", allow_custom_value=True)
387
+ lora_trigger[i] = gr.Textbox(label=f"LoRA {int(i+1)} Trigger Prompt", lines=1, max_lines=4, value="")
388
+ lora_wt[i] = gr.Slider(label=f"LoRA {int(i+1)} Scale", minimum=-3, maximum=3, step=0.01, value=1.00)
389
+ with gr.Row():
390
+ lora_info[i] = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
391
+ lora_copy[i] = gr.Button(value="Copy example to prompt", visible=False)
392
+ lora_md[i] = gr.Markdown(value="", visible=False)
393
+ lora_num[i] = gr.Number(i, visible=False)
394
+ with gr.Accordion("From URL", open=True, visible=True):
395
+ with gr.Row():
396
+ lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
397
+ lora_search_civitai_submit = gr.Button("Search on Civitai")
398
+ lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D", "Flux.1 S"])
399
+ with gr.Row():
400
+ lora_search_civitai_json = gr.JSON(value={}, visible=False)
401
+ lora_search_civitai_desc = gr.Markdown(value="", visible=False)
402
+ lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
403
+ lora_download_url = gr.Textbox(label="URL", placeholder="http://...my_lora_url.safetensors", lines=1)
404
+ with gr.Row():
405
+ lora_download = [None] * num_loras
406
+ for i in range(num_loras):
407
+ lora_download[i] = gr.Button(f"Get and set LoRA to {int(i+1)}")
408
+ with gr.Accordion("ControlNet (🚧Under construction...🚧)", open=False, visible=False):
409
+ with gr.Column():
410
+ cn_on = gr.Checkbox(False, label="Use ControlNet")
411
+ cn_mode = [None] * num_cns
412
+ cn_scale = [None] * num_cns
413
+ cn_image = [None] * num_cns
414
+ cn_image_ref = [None] * num_cns
415
+ cn_res = [None] * num_cns
416
+ cn_num = [None] * num_cns
417
+ with gr.Row():
418
+ for i in range(num_cns):
419
+ with gr.Column():
420
+ with gr.Row():
421
+ cn_mode[i] = gr.Dropdown(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0], allow_custom_value=False)
422
+ cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
423
+ cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
424
+ cn_num[i] = gr.Number(i, visible=False)
425
+ with gr.Row():
426
+ cn_image_ref[i] = gr.Image(label="Image Reference", type="pil", format="png", height=256, sources=["upload", "clipboard"], show_share_button=False)
427
+ cn_image[i] = gr.Image(label="Control Image", type="pil", format="png", height=256, show_share_button=False, interactive=False)
428
+
429
+ gallery.select(
430
+ update_selection,
431
+ inputs=[width, height],
432
+ outputs=[prompt, selected_info, selected_index, width, height],
433
+ queue=False,
434
+ show_api=False,
435
+ )
436
+ custom_lora.input(
437
+ add_custom_lora,
438
+ inputs=[custom_lora],
439
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt],
440
+ queue=False,
441
+ show_api=False,
442
+ )
443
+ custom_lora_button.click(
444
+ remove_custom_lora,
445
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora],
446
+ queue=False,
447
+ show_api=False,
448
+ )
449
+ gr.on(
450
+ triggers=[generate_button.click, prompt.submit],
451
+ fn=change_base_model,
452
+ inputs=[model_name, cn_on],
453
+ outputs=[result],
454
+ queue=True,
455
+ show_api=False,
456
+ trigger_mode="once",
457
+ ).success(
458
+ fn=run_lora,
459
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
460
+ lora_scale, lora_repo_json, cn_on],
461
+ outputs=[result, seed],
462
+ queue=True,
463
+ show_api=True,
464
+ )
465
+
466
+ deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
467
+ """gr.on(
468
+ triggers=[model_name.change, cn_on.change],
469
+ fn=change_base_model,
470
+ inputs=[model_name, cn_on],
471
+ outputs=[result],
472
+ queue=True,
473
+ show_api=False,
474
+ trigger_mode="once",
475
+ ).then(get_t2i_model_info, [model_name], [model_info], queue=True, show_api=False)"""
476
+ gr.on(
477
+ triggers=[model_name.change, cn_on.change],
478
+ fn=get_t2i_model_info,
479
+ inputs=[model_name],
480
+ outputs=[model_info],
481
+ queue=False,
482
+ show_api=False,
483
+ trigger_mode="once",
484
+ ).then(change_base_model, [model_name, cn_on], [result], queue=True, show_api=False)
485
+ prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
486
+
487
+ gr.on(
488
+ triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
489
+ fn=search_civitai_lora,
490
+ inputs=[lora_search_civitai_query, lora_search_civitai_basemodel],
491
+ outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
492
+ scroll_to_output=True,
493
+ queue=True,
494
+ show_api=False,
495
+ )
496
+ lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
497
+ lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
498
+
499
+ for i, l in enumerate(lora_repo):
500
+ deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
501
+ gr.on(
502
+ triggers=[lora_download[i].click],
503
+ fn=download_my_lora,
504
+ inputs=[lora_download_url, lora_repo[i]],
505
+ outputs=[lora_repo[i]],
506
+ scroll_to_output=True,
507
+ queue=True,
508
+ show_api=False,
509
+ )
510
+ gr.on(
511
+ triggers=[lora_repo[i].change, lora_wt[i].change],
512
+ fn=update_loras,
513
+ inputs=[prompt, lora_repo[i], lora_wt[i]],
514
+ outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]],
515
+ queue=False,
516
+ trigger_mode="once",
517
+ show_api=False,
518
+ ).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
519
+ ).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
520
+ ).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
521
+
522
+ for i, m in enumerate(cn_mode):
523
+ gr.on(
524
+ triggers=[cn_mode[i].change, cn_scale[i].change],
525
+ fn=set_control_union_mode,
526
+ inputs=[cn_num[i], cn_mode[i], cn_scale[i]],
527
+ outputs=[cn_on],
528
+ queue=True,
529
+ show_api=False,
530
+ ).success(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
531
+ cn_image_ref[i].upload(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
532
+
533
+ tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
534
+ ).success(
535
+ predict_tags_wd,
536
+ [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
537
+ [v2_series, v2_character, prompt, v2_copy],
538
+ show_api=False,
539
+ ).success(predict_tags_fl2_flux, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
540
+ ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
541
+
542
+ with gr.Tab("FLUX Prompt Generator"):
543
+ from prompt import (PromptGenerator, HuggingFaceInferenceNode, florence_caption,
544
+ ARTFORM, PHOTO_TYPE, ROLES, HAIRSTYLES, LIGHTING, COMPOSITION, POSE, BACKGROUND,
545
+ PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM, PLACE,
546
+ FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, FEMALE_BODY_TYPES, MALE_BODY_TYPES,
547
+ FEMALE_CLOTHING, MALE_CLOTHING, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, pg_title)
548
+
549
+ prompt_generator = PromptGenerator()
550
+ huggingface_node = HuggingFaceInferenceNode()
551
+
552
+ gr.HTML(pg_title)
553
+
554
+ with gr.Row():
555
+ with gr.Column(scale=2):
556
+ with gr.Accordion("Basic Settings"):
557
+ pg_custom = gr.Textbox(label="Custom Input Prompt (optional)")
558
+ pg_subject = gr.Textbox(label="Subject (optional)")
559
+ pg_gender = gr.Radio(["female", "male"], label="Gender", value="female")
560
+
561
+ # Add the radio button for global option selection
562
+ pg_global_option = gr.Radio(
563
+ ["Disabled", "Random", "No Figure Rand"],
564
+ label="Set all options to:",
565
+ value="Disabled"
566
+ )
567
+
568
+ with gr.Accordion("Artform and Photo Type", open=False):
569
+ pg_artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
570
+ pg_photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
571
+
572
+ with gr.Accordion("Character Details", open=False):
573
+ pg_body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled")
574
+ pg_default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled")
575
+ pg_roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
576
+ pg_hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
577
+ pg_clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled")
578
+
579
+ with gr.Accordion("Scene Details", open=False):
580
+ pg_place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
581
+ pg_lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
582
+ pg_composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
583
+ pg_pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
584
+ pg_background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
585
+
586
+ with gr.Accordion("Style and Artist", open=False):
587
+ pg_additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
588
+ pg_photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
589
+ pg_device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
590
+ pg_photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
591
+ pg_artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
592
+ pg_digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
593
+
594
+ pg_generate_button = gr.Button("Generate Prompt")
595
+
596
+ with gr.Column(scale=2):
597
+ with gr.Accordion("Image and Caption", open=False):
598
+ pg_input_image = gr.Image(label="Input Image (optional)")
599
+ pg_caption_output = gr.Textbox(label="Generated Caption", lines=3)
600
+ pg_create_caption_button = gr.Button("Create Caption")
601
+ pg_add_caption_button = gr.Button("Add Caption to Prompt")
602
+
603
+ with gr.Accordion("Prompt Generation", open=True):
604
+ pg_output = gr.Textbox(label="Generated Prompt / Input Text", lines=4)
605
+ pg_t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
606
+ pg_clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
607
+ pg_clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
608
+
609
+ with gr.Column(scale=2):
610
+ with gr.Accordion("Prompt Generation with LLM", open=False):
611
+ pg_happy_talk = gr.Checkbox(label="Happy Talk", value=True)
612
+ pg_compress = gr.Checkbox(label="Compress", value=True)
613
+ pg_compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
614
+ pg_poster = gr.Checkbox(label="Poster", value=False)
615
+ pg_custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
616
+ pg_generate_text_button = gr.Button("Generate Prompt with LLM (Llama 3.1 70B)")
617
+ pg_text_output = gr.Textbox(label="Generated Text", lines=10)
618
+
619
+ description_ui()
620
+
621
+ def create_caption(image):
622
+ if image is not None:
623
+ return florence_caption(image)
624
+ return ""
625
+
626
+ pg_create_caption_button.click(
627
+ create_caption,
628
+ inputs=[pg_input_image],
629
+ outputs=[pg_caption_output]
630
+ )
631
+
632
+ def generate_prompt_with_dynamic_seed(*args):
633
+ # Generate a new random seed
634
+ dynamic_seed = random.randint(0, 1000000)
635
+
636
+ # Call the generate_prompt function with the dynamic seed
637
+ result = prompt_generator.generate_prompt(dynamic_seed, *args)
638
+
639
+ # Return the result along with the used seed
640
+ return [dynamic_seed] + list(result)
641
+
642
+ pg_generate_button.click(
643
+ generate_prompt_with_dynamic_seed,
644
+ inputs=[pg_custom, pg_subject, pg_gender, pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles,
645
+ pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform,
646
+ pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background, pg_input_image],
647
+ outputs=[gr.Number(label="Used Seed", visible=False), pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output]
648
+ ) #
649
+
650
+ pg_add_caption_button.click(
651
+ prompt_generator.add_caption_to_prompt,
652
+ inputs=[pg_output, pg_caption_output],
653
+ outputs=[pg_output]
654
+ )
655
+
656
+ pg_generate_text_button.click(
657
+ huggingface_node.generate,
658
+ inputs=[pg_output, pg_happy_talk, pg_compress, pg_compression_level, pg_poster, pg_custom_base_prompt],
659
+ outputs=pg_text_output
660
+ )
661
+
662
+ def update_all_options(choice):
663
+ updates = {}
664
+ if choice == "Disabled":
665
+ for dropdown in [
666
+ pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
667
+ pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
668
+ pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
669
+ ]:
670
+ updates[dropdown] = gr.update(value="disabled")
671
+ elif choice == "Random":
672
+ for dropdown in [
673
+ pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
674
+ pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
675
+ pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
676
+ ]:
677
+ updates[dropdown] = gr.update(value="random")
678
+ else: # No Figure Random
679
+ for dropdown in [pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_pose, pg_additional_details]:
680
+ updates[dropdown] = gr.update(value="disabled")
681
+ for dropdown in [pg_artform, pg_place, pg_lighting, pg_composition, pg_background, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform]:
682
+ updates[dropdown] = gr.update(value="random")
683
+ return updates
684
+
685
+ pg_global_option.change(
686
+ update_all_options,
687
+ inputs=[pg_global_option],
688
+ outputs=[
689
+ pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
690
+ pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
691
+ pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
692
+ ]
693
+ )
694
+
695
+ app.queue()
696
+ app.launch()
app.py CHANGED
@@ -1,44 +1,54 @@
1
  import spaces
2
  import gradio as gr
3
  import json
4
- import logging
5
  import torch
6
- from PIL import Image
7
- from diffusers import DiffusionPipeline
8
  from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
9
- from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
10
- import copy
11
  import random
12
  import time
13
 
14
-
15
  from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists,
16
  description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras,
17
  get_trigger_word, enhance_prompt, deselect_lora, num_cns, set_control_union_image,
18
- get_control_union_mode, set_control_union_mode, get_control_params)
19
  from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
20
  download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
21
  update_loras, get_t2i_model_info)
22
  from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
23
  from tagger.fl2flux import predict_tags_fl2_flux
24
 
 
 
 
25
 
26
- dtype = torch.bfloat16
27
- #dtype = torch.float8_e4m3fn
28
  # Initialize the base model
29
  base_model = models[0]
30
  controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
31
  #controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
32
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)
 
 
 
 
 
33
  controlnet_union = None
34
  controlnet = None
35
  last_model = models[0]
36
  last_cn_on = False
 
 
 
 
37
 
38
  # https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
39
  # https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
40
- def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
 
41
  global pipe
 
 
42
  global controlnet_union
43
  global controlnet
44
  global last_model
@@ -46,25 +56,29 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
46
  global dtype
47
  try:
48
  if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
 
 
 
 
 
 
49
  if cn_on:
50
- #progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
51
  print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
52
- clear_cache()
53
  controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
54
  controlnet = FluxMultiControlNetModel([controlnet_union])
55
  pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
56
  last_model = repo_id
57
  last_cn_on = cn_on
58
- #progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
59
  print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
60
  else:
61
- #progress(0, desc=f"Loading model: {repo_id}")
62
  print(f"Loading model: {repo_id}")
63
- clear_cache()
64
  pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
65
  last_model = repo_id
66
  last_cn_on = cn_on
67
- #progress(1, desc=f"Model loaded: {repo_id}")
68
  print(f"Model loaded: {repo_id}")
69
  except Exception as e:
70
  print(f"Model load Error: {e}")
@@ -73,12 +87,6 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
73
 
74
  change_base_model.zerogpu = True
75
 
76
- # Load LoRAs from JSON file
77
- with open('loras.json', 'r') as f:
78
- loras = json.load(f)
79
-
80
- MAX_SEED = 2**32-1
81
-
82
  class calculateDuration:
83
  def __init__(self, activity_name=""):
84
  self.activity_name = activity_name
@@ -121,18 +129,24 @@ def update_selection(evt: gr.SelectData, width, height):
121
  @spaces.GPU(duration=70)
122
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
123
  global pipe
 
 
124
  global controlnet
125
  global controlnet_union
126
  try:
127
- pipe.to("cuda")
 
128
  generator = torch.Generator(device="cuda").manual_seed(seed)
129
 
130
  with calculateDuration("Generating image"):
131
  # Generate image
132
  modes, images, scales = get_control_params()
133
  if not cn_on or len(modes) == 0:
 
 
 
134
  progress(0, desc="Start Inference.")
135
- image = pipe(
136
  prompt=prompt_mash,
137
  num_inference_steps=steps,
138
  guidance_scale=cfg_scale,
@@ -140,12 +154,18 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
140
  height=height,
141
  generator=generator,
142
  joint_attention_kwargs={"scale": lora_scale},
143
- ).images[0]
 
 
 
144
  else:
145
- progress(0, desc="Start Inference with ControlNet.")
146
  if controlnet is not None: controlnet.to("cuda")
147
  if controlnet_union is not None: controlnet_union.to("cuda")
148
- image = pipe(
 
 
 
 
149
  prompt=prompt_mash,
150
  control_image=images,
151
  control_mode=modes,
@@ -156,23 +176,35 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
156
  controlnet_conditioning_scale=scales,
157
  generator=generator,
158
  joint_attention_kwargs={"scale": lora_scale},
159
- ).images[0]
 
160
  except Exception as e:
161
  print(e)
162
- raise gr.Error(f"Inference Error {e}") from e
163
- return image
164
 
165
  def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
166
- lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
167
  global pipe
168
  if selected_index is None and not is_valid_lora(lora_json):
169
  gr.Info("LoRA isn't selected.")
170
  # raise gr.Error("You must select a LoRA before proceeding.")
171
  progress(0, desc="Preparing Inference.")
172
 
 
 
 
 
 
 
 
 
 
 
 
173
  prompt_mash = prompt
174
  if is_valid_lora(lora_json):
175
- with calculateDuration("Loading LoRA weights"):
 
176
  fuse_loras(pipe, lora_json)
177
  trigger_word = get_trigger_word(lora_json)
178
  prompt_mash = f"{prompt} {trigger_word}"
@@ -203,17 +235,17 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
203
  seed = random.randint(0, MAX_SEED)
204
 
205
  progress(0, desc="Running Inference.")
206
-
207
- image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
208
- if is_valid_lora(lora_json):
209
- pipe.unfuse_lora()
210
- pipe.unload_lora_weights()
211
- if selected_index is not None: pipe.unload_lora_weights()
212
- pipe.to("cpu")
213
- if controlnet is not None: controlnet.to("cpu")
214
- if controlnet_union is not None: controlnet_union.to("cpu")
215
- clear_cache()
216
- return image, seed
217
 
218
  def get_huggingface_safetensors(link):
219
  split_link = link.split("/")
@@ -306,7 +338,7 @@ css = '''
306
  #progress .generating{display:none}
307
  .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
308
  .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
309
- #model-info {text-align: center; !important}
310
  '''
311
  with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
312
  with gr.Tab("FLUX LoRA the Explorer"):
@@ -329,8 +361,10 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
329
  v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
330
  tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
331
  tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
332
- prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt")
333
- prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary")
 
 
334
  with gr.Column(scale=1, elem_id="gen_column"):
335
  generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
336
  with gr.Row():
@@ -350,19 +384,20 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
350
  custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
351
  deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
352
  with gr.Column():
 
353
  result = gr.Image(label="Generated Image", format="png", show_share_button=False)
354
  with gr.Group():
355
  model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
356
- model_info = gr.Markdown(elem_id="model-info")
357
  with gr.Row():
358
  with gr.Accordion("Advanced Settings", open=False):
359
  with gr.Column():
360
- with gr.Row():
361
- cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
362
- steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
363
  with gr.Row():
364
  width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
365
  height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
 
 
 
366
  with gr.Row():
367
  randomize_seed = gr.Checkbox(True, label="Randomize seed")
368
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
@@ -417,8 +452,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
417
  with gr.Row():
418
  for i in range(num_cns):
419
  with gr.Column():
 
420
  with gr.Row():
421
- cn_mode[i] = gr.Dropdown(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0], allow_custom_value=False)
422
  cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
423
  cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
424
  cn_num[i] = gr.Number(i, visible=False)
@@ -432,6 +467,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
432
  outputs=[prompt, selected_info, selected_index, width, height],
433
  queue=False,
434
  show_api=False,
 
435
  )
436
  custom_lora.input(
437
  add_custom_lora,
@@ -457,22 +493,13 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
457
  ).success(
458
  fn=run_lora,
459
  inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
460
- lora_scale, lora_repo_json, cn_on],
461
- outputs=[result, seed],
462
  queue=True,
463
  show_api=True,
464
  )
465
 
466
  deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
467
- """gr.on(
468
- triggers=[model_name.change, cn_on.change],
469
- fn=change_base_model,
470
- inputs=[model_name, cn_on],
471
- outputs=[result],
472
- queue=True,
473
- show_api=False,
474
- trigger_mode="once",
475
- ).then(get_t2i_model_info, [model_name], [model_info], queue=True, show_api=False)"""
476
  gr.on(
477
  triggers=[model_name.change, cn_on.change],
478
  fn=get_t2i_model_info,
 
1
  import spaces
2
  import gradio as gr
3
  import json
 
4
  import torch
5
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
6
+ from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
7
  from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
8
+ from huggingface_hub import HfFileSystem, ModelCard
 
9
  import random
10
  import time
11
 
 
12
  from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists,
13
  description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras,
14
  get_trigger_word, enhance_prompt, deselect_lora, num_cns, set_control_union_image,
15
+ get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
16
  from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
17
  download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
18
  update_loras, get_t2i_model_info)
19
  from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
20
  from tagger.fl2flux import predict_tags_fl2_flux
21
 
22
+ # Load LoRAs from JSON file
23
+ with open('loras.json', 'r') as f:
24
+ loras = json.load(f)
25
 
 
 
26
  # Initialize the base model
27
  base_model = models[0]
28
  controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
29
  #controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
30
+ dtype = torch.bfloat16
31
+ #dtype = torch.float8_e4m3fn
32
+ #device = "cuda" if torch.cuda.is_available() else "cpu"
33
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
34
+ good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
35
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
36
  controlnet_union = None
37
  controlnet = None
38
  last_model = models[0]
39
  last_cn_on = False
40
+ #controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
41
+ #controlnet = FluxMultiControlNetModel([controlnet_union])
42
+
43
+ MAX_SEED = 2**32-1
44
 
45
  # https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
46
  # https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
47
+ #@spaces.GPU()
48
+ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)): # , progress=gr.Progress(track_tqdm=True) # gradio.exceptions.Error: 'Model load Error: too many values to unpack (expected 2)'
49
  global pipe
50
+ global taef1
51
+ global good_vae
52
  global controlnet_union
53
  global controlnet
54
  global last_model
 
56
  global dtype
57
  try:
58
  if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
59
+ pipe.to("cpu")
60
+ good_vae.to("cpu")
61
+ taef1.to("cpu")
62
+ if controlnet is not None: controlnet.to("cpu")
63
+ if controlnet_union is not None: controlnet_union.to("cpu")
64
+ clear_cache()
65
  if cn_on:
66
+ progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
67
  print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
 
68
  controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
69
  controlnet = FluxMultiControlNetModel([controlnet_union])
70
  pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
71
  last_model = repo_id
72
  last_cn_on = cn_on
73
+ progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
74
  print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
75
  else:
76
+ progress(0, desc=f"Loading model: {repo_id}")
77
  print(f"Loading model: {repo_id}")
 
78
  pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
79
  last_model = repo_id
80
  last_cn_on = cn_on
81
+ progress(1, desc=f"Model loaded: {repo_id}")
82
  print(f"Model loaded: {repo_id}")
83
  except Exception as e:
84
  print(f"Model load Error: {e}")
 
87
 
88
  change_base_model.zerogpu = True
89
 
 
 
 
 
 
 
90
  class calculateDuration:
91
  def __init__(self, activity_name=""):
92
  self.activity_name = activity_name
 
129
  @spaces.GPU(duration=70)
130
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
131
  global pipe
132
+ global taef1
133
+ global good_vae
134
  global controlnet
135
  global controlnet_union
136
  try:
137
+ good_vae.to("cuda")
138
+ taef1.to("cuda")
139
  generator = torch.Generator(device="cuda").manual_seed(seed)
140
 
141
  with calculateDuration("Generating image"):
142
  # Generate image
143
  modes, images, scales = get_control_params()
144
  if not cn_on or len(modes) == 0:
145
+ pipe.vae = taef1
146
+ pipe.to("cuda")
147
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
148
  progress(0, desc="Start Inference.")
149
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
150
  prompt=prompt_mash,
151
  num_inference_steps=steps,
152
  guidance_scale=cfg_scale,
 
154
  height=height,
155
  generator=generator,
156
  joint_attention_kwargs={"scale": lora_scale},
157
+ output_type="pil",
158
+ good_vae=good_vae,
159
+ ):
160
+ yield img
161
  else:
 
162
  if controlnet is not None: controlnet.to("cuda")
163
  if controlnet_union is not None: controlnet_union.to("cuda")
164
+ pipe.vae = good_vae
165
+ pipe.controlnet = controlnet
166
+ pipe.to("cuda")
167
+ progress(0, desc="Start Inference with ControlNet.")
168
+ for img in pipe(
169
  prompt=prompt_mash,
170
  control_image=images,
171
  control_mode=modes,
 
176
  controlnet_conditioning_scale=scales,
177
  generator=generator,
178
  joint_attention_kwargs={"scale": lora_scale},
179
+ ).images:
180
+ yield img
181
  except Exception as e:
182
  print(e)
183
+ raise gr.Error(f"Inference Error: {e}") from e
 
184
 
185
  def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
186
+ lora_scale, lora_json, cn_on, translate_on, progress=gr.Progress(track_tqdm=True)):
187
  global pipe
188
  if selected_index is None and not is_valid_lora(lora_json):
189
  gr.Info("LoRA isn't selected.")
190
  # raise gr.Error("You must select a LoRA before proceeding.")
191
  progress(0, desc="Preparing Inference.")
192
 
193
+ with calculateDuration("Unloading LoRA"):
194
+ try:
195
+ pipe.unfuse_lora()
196
+ pipe.unload_lora_weights()
197
+ except Exception as e:
198
+ print(e)
199
+
200
+ clear_cache() #
201
+
202
+ if translate_on: prompt = translate_to_en(prompt)
203
+
204
  prompt_mash = prompt
205
  if is_valid_lora(lora_json):
206
+ # Load External LoRA weights
207
+ with calculateDuration("Loading External LoRA weights"):
208
  fuse_loras(pipe, lora_json)
209
  trigger_word = get_trigger_word(lora_json)
210
  prompt_mash = f"{prompt} {trigger_word}"
 
235
  seed = random.randint(0, MAX_SEED)
236
 
237
  progress(0, desc="Running Inference.")
238
+ image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
239
+ # Consume the generator to get the final image
240
+ final_image = None
241
+ step_counter = 0
242
+ for image in image_generator:
243
+ step_counter+=1
244
+ final_image = image
245
+ progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
246
+ yield image, seed, gr.update(value=progress_bar, visible=True)
247
+
248
+ yield final_image, seed, gr.update(value=progress_bar, visible=False)
249
 
250
  def get_huggingface_safetensors(link):
251
  split_link = link.split("/")
 
338
  #progress .generating{display:none}
339
  .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
340
  .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
341
+ .info {text-align:center; display:inline-flex; align-items:center !important}
342
  '''
343
  with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
344
  with gr.Tab("FLUX LoRA the Explorer"):
 
361
  v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
362
  tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
363
  tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
364
+ prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt", show_copy_button=True)
365
+ with gr.Row():
366
+ prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary")
367
+ auto_trans = gr.Checkbox(label="Auto translate to English", value=True, elem_classes="info")
368
  with gr.Column(scale=1, elem_id="gen_column"):
369
  generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
370
  with gr.Row():
 
384
  custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
385
  deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
386
  with gr.Column():
387
+ progress_bar = gr.Markdown(elem_id="progress",visible=False)
388
  result = gr.Image(label="Generated Image", format="png", show_share_button=False)
389
  with gr.Group():
390
  model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
391
+ model_info = gr.Markdown(elem_classes="info")
392
  with gr.Row():
393
  with gr.Accordion("Advanced Settings", open=False):
394
  with gr.Column():
 
 
 
395
  with gr.Row():
396
  width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
397
  height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
398
+ with gr.Row():
399
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
400
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
401
  with gr.Row():
402
  randomize_seed = gr.Checkbox(True, label="Randomize seed")
403
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
 
452
  with gr.Row():
453
  for i in range(num_cns):
454
  with gr.Column():
455
+ cn_mode[i] = gr.Radio(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0])
456
  with gr.Row():
 
457
  cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
458
  cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
459
  cn_num[i] = gr.Number(i, visible=False)
 
467
  outputs=[prompt, selected_info, selected_index, width, height],
468
  queue=False,
469
  show_api=False,
470
+ trigger_mode="once",
471
  )
472
  custom_lora.input(
473
  add_custom_lora,
 
493
  ).success(
494
  fn=run_lora,
495
  inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
496
+ lora_scale, lora_repo_json, cn_on, auto_trans],
497
+ outputs=[result, seed, progress_bar],
498
  queue=True,
499
  show_api=True,
500
  )
501
 
502
  deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
 
 
 
 
 
 
 
 
 
503
  gr.on(
504
  triggers=[model_name.change, cn_on.change],
505
  fn=get_t2i_model_info,
mod.py CHANGED
@@ -74,6 +74,17 @@ def is_repo_exists(repo_id):
74
  return True # for safe
75
 
76
 
 
 
 
 
 
 
 
 
 
 
 
77
  def clear_cache():
78
  try:
79
  torch.cuda.empty_cache()
@@ -349,7 +360,7 @@ enhancer_flux = load_prompt_enhancer()
349
 
350
  @spaces.GPU(duration=30)
351
  def enhance_prompt(input_prompt):
352
- result = enhancer_flux("enhance prompt: " + input_prompt, max_length = 256)
353
  enhanced_text = result[0]['generated_text']
354
  return enhanced_text
355
 
 
74
  return True # for safe
75
 
76
 
77
+ from translatepy import Translator
78
+ translator = Translator()
79
+ def translate_to_en(input: str):
80
+ try:
81
+ output = str(translator.translate(input, 'English'))
82
+ except Exception as e:
83
+ output = input
84
+ print(e)
85
+ return output
86
+
87
+
88
  def clear_cache():
89
  try:
90
  torch.cuda.empty_cache()
 
360
 
361
  @spaces.GPU(duration=30)
362
  def enhance_prompt(input_prompt):
363
+ result = enhancer_flux("enhance prompt: " + translate_to_en(input_prompt), max_length = 256)
364
  enhanced_text = result[0]['generated_text']
365
  return enhanced_text
366
 
modutils.py CHANGED
@@ -27,6 +27,17 @@ def list_sub(a, b):
27
  return [e for e in a if e not in b]
28
 
29
 
 
 
 
 
 
 
 
 
 
 
 
30
  def get_local_model_list(dir_path):
31
  model_list = []
32
  valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin')
 
27
  return [e for e in a if e not in b]
28
 
29
 
30
+ from translatepy import Translator
31
+ translator = Translator()
32
+ def translate_to_en(input: str):
33
+ try:
34
+ output = str(translator.translate(input, 'English'))
35
+ except Exception as e:
36
+ output = input
37
+ print(e)
38
+ return output
39
+
40
+
41
  def get_local_model_list(dir_path):
42
  model_list = []
43
  valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin')
requirements.txt CHANGED
@@ -14,4 +14,5 @@ numpy
14
  opencv-python
15
  deepspeed
16
  mediapipe
17
- openai==1.37.0
 
 
14
  opencv-python
15
  deepspeed
16
  mediapipe
17
+ openai==1.37.0
18
+ translatepy
tagger/tagger.py CHANGED
@@ -1,11 +1,8 @@
 
1
  from PIL import Image
2
  import torch
3
  import gradio as gr
4
- import spaces
5
- from transformers import (
6
- AutoImageProcessor,
7
- AutoModelForImageClassification,
8
- )
9
  from pathlib import Path
10
 
11
 
@@ -14,9 +11,13 @@ WD_MODEL_NAME = WD_MODEL_NAMES[0]
14
 
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
16
  default_device = device
17
- wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True).to(default_device).eval()
18
- wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
19
 
 
 
 
 
 
 
20
 
21
  def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
22
  return (
@@ -186,18 +187,16 @@ def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "
186
  return output_prompt
187
 
188
 
 
 
189
  def translate_prompt(prompt: str = ""):
190
- def translate_to_english(prompt):
191
- import httpcore
192
- setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
193
- from googletrans import Translator
194
- translator = Translator()
195
  try:
196
- translated_prompt = translator.translate(prompt, src='auto', dest='en').text
197
- return translated_prompt
198
  except Exception as e:
 
199
  print(e)
200
- return prompt
201
 
202
  def is_japanese(s):
203
  import unicodedata
@@ -220,17 +219,13 @@ def translate_prompt(prompt: str = ""):
220
 
221
 
222
  def translate_prompt_to_ja(prompt: str = ""):
223
- def translate_to_japanese(prompt):
224
- import httpcore
225
- setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
226
- from googletrans import Translator
227
- translator = Translator()
228
  try:
229
- translated_prompt = translator.translate(prompt, src='en', dest='ja').text
230
- return translated_prompt
231
  except Exception as e:
 
232
  print(e)
233
- return prompt
234
 
235
  def is_japanese(s):
236
  import unicodedata
 
1
+ import spaces
2
  from PIL import Image
3
  import torch
4
  import gradio as gr
5
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
 
 
 
 
6
  from pathlib import Path
7
 
8
 
 
11
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  default_device = device
 
 
14
 
15
+ try:
16
+ wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True).to(default_device).eval()
17
+ wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
18
+ except Exception as e:
19
+ print(e)
20
+ wd_model = wd_processor = None
21
 
22
  def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
23
  return (
 
187
  return output_prompt
188
 
189
 
190
+ from translatepy import Translator
191
+ translator = Translator()
192
  def translate_prompt(prompt: str = ""):
193
+ def translate_to_english(input: str):
 
 
 
 
194
  try:
195
+ output = str(translator.translate(input, 'English'))
 
196
  except Exception as e:
197
+ output = input
198
  print(e)
199
+ return output
200
 
201
  def is_japanese(s):
202
  import unicodedata
 
219
 
220
 
221
  def translate_prompt_to_ja(prompt: str = ""):
222
+ def translate_to_japanese(input: str):
 
 
 
 
223
  try:
224
+ output = str(translator.translate(input, 'Japanese'))
 
225
  except Exception as e:
226
+ output = input
227
  print(e)
228
+ return output
229
 
230
  def is_japanese(s):
231
  import unicodedata