Upload 4 files
Browse files- app.py +1 -1
- live_preview_helpers.py +166 -166
- mod.py +3 -3
- modutils.py +6 -5
app.py
CHANGED
@@ -301,7 +301,7 @@ css = '''
|
|
301 |
.styler{--form-gap-width: 0px !important}
|
302 |
#model-info {text-align: center; !important}
|
303 |
'''
|
304 |
-
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
305 |
with gr.Tab("FLUX LoRA the Explorer"):
|
306 |
title = gr.HTML(
|
307 |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
|
|
|
301 |
.styler{--form-gap-width: 0px !important}
|
302 |
#model-info {text-align: center; !important}
|
303 |
'''
|
304 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
|
305 |
with gr.Tab("FLUX LoRA the Explorer"):
|
306 |
title = gr.HTML(
|
307 |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
|
live_preview_helpers.py
CHANGED
@@ -1,166 +1,166 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
4 |
-
from typing import Any, Dict, List, Optional, Union
|
5 |
-
|
6 |
-
# Helper functions
|
7 |
-
def calculate_shift(
|
8 |
-
image_seq_len,
|
9 |
-
base_seq_len: int = 256,
|
10 |
-
max_seq_len: int = 4096,
|
11 |
-
base_shift: float = 0.5,
|
12 |
-
max_shift: float = 1.16,
|
13 |
-
):
|
14 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
15 |
-
b = base_shift - m * base_seq_len
|
16 |
-
mu = image_seq_len * m + b
|
17 |
-
return mu
|
18 |
-
|
19 |
-
def retrieve_timesteps(
|
20 |
-
scheduler,
|
21 |
-
num_inference_steps: Optional[int] = None,
|
22 |
-
device: Optional[Union[str, torch.device]] = None,
|
23 |
-
timesteps: Optional[List[int]] = None,
|
24 |
-
sigmas: Optional[List[float]] = None,
|
25 |
-
**kwargs,
|
26 |
-
):
|
27 |
-
if timesteps is not None and sigmas is not None:
|
28 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
29 |
-
if timesteps is not None:
|
30 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
31 |
-
timesteps = scheduler.timesteps
|
32 |
-
num_inference_steps = len(timesteps)
|
33 |
-
elif sigmas is not None:
|
34 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
35 |
-
timesteps = scheduler.timesteps
|
36 |
-
num_inference_steps = len(timesteps)
|
37 |
-
else:
|
38 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
39 |
-
timesteps = scheduler.timesteps
|
40 |
-
return timesteps, num_inference_steps
|
41 |
-
|
42 |
-
# FLUX pipeline function
|
43 |
-
@torch.inference_mode()
|
44 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
-
self,
|
46 |
-
prompt: Union[str, List[str]] = None,
|
47 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
-
height: Optional[int] = None,
|
49 |
-
width: Optional[int] = None,
|
50 |
-
num_inference_steps: int = 28,
|
51 |
-
timesteps: List[int] = None,
|
52 |
-
guidance_scale: float = 3.5,
|
53 |
-
num_images_per_prompt: Optional[int] = 1,
|
54 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
55 |
-
latents: Optional[torch.FloatTensor] = None,
|
56 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
-
output_type: Optional[str] = "pil",
|
59 |
-
return_dict: bool = True,
|
60 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
-
max_sequence_length: int = 512,
|
62 |
-
good_vae: Optional[Any] = None,
|
63 |
-
):
|
64 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
66 |
-
|
67 |
-
# 1. Check inputs
|
68 |
-
self.check_inputs(
|
69 |
-
prompt,
|
70 |
-
prompt_2,
|
71 |
-
height,
|
72 |
-
width,
|
73 |
-
prompt_embeds=prompt_embeds,
|
74 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
75 |
-
max_sequence_length=max_sequence_length,
|
76 |
-
)
|
77 |
-
|
78 |
-
self._guidance_scale = guidance_scale
|
79 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
80 |
-
self._interrupt = False
|
81 |
-
|
82 |
-
# 2. Define call parameters
|
83 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
84 |
-
device = self._execution_device
|
85 |
-
|
86 |
-
# 3. Encode prompt
|
87 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
88 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
89 |
-
prompt=prompt,
|
90 |
-
prompt_2=prompt_2,
|
91 |
-
prompt_embeds=prompt_embeds,
|
92 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
93 |
-
device=device,
|
94 |
-
num_images_per_prompt=num_images_per_prompt,
|
95 |
-
max_sequence_length=max_sequence_length,
|
96 |
-
lora_scale=lora_scale,
|
97 |
-
)
|
98 |
-
# 4. Prepare latent variables
|
99 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
100 |
-
latents, latent_image_ids = self.prepare_latents(
|
101 |
-
batch_size * num_images_per_prompt,
|
102 |
-
num_channels_latents,
|
103 |
-
height,
|
104 |
-
width,
|
105 |
-
prompt_embeds.dtype,
|
106 |
-
device,
|
107 |
-
generator,
|
108 |
-
latents,
|
109 |
-
)
|
110 |
-
# 5. Prepare timesteps
|
111 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
112 |
-
image_seq_len = latents.shape[1]
|
113 |
-
mu = calculate_shift(
|
114 |
-
image_seq_len,
|
115 |
-
self.scheduler.config.base_image_seq_len,
|
116 |
-
self.scheduler.config.max_image_seq_len,
|
117 |
-
self.scheduler.config.base_shift,
|
118 |
-
self.scheduler.config.max_shift,
|
119 |
-
)
|
120 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
121 |
-
self.scheduler,
|
122 |
-
num_inference_steps,
|
123 |
-
device,
|
124 |
-
timesteps,
|
125 |
-
sigmas,
|
126 |
-
mu=mu,
|
127 |
-
)
|
128 |
-
self._num_timesteps = len(timesteps)
|
129 |
-
|
130 |
-
# Handle guidance
|
131 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
132 |
-
|
133 |
-
# 6. Denoising loop
|
134 |
-
for i, t in enumerate(timesteps):
|
135 |
-
if self.interrupt:
|
136 |
-
continue
|
137 |
-
|
138 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
-
|
140 |
-
noise_pred = self.transformer(
|
141 |
-
hidden_states=latents,
|
142 |
-
timestep=timestep / 1000,
|
143 |
-
guidance=guidance,
|
144 |
-
pooled_projections=pooled_prompt_embeds,
|
145 |
-
encoder_hidden_states=prompt_embeds,
|
146 |
-
txt_ids=text_ids,
|
147 |
-
img_ids=latent_image_ids,
|
148 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
149 |
-
return_dict=False,
|
150 |
-
)[0]
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
# Final image using good_vae
|
161 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
-
self.maybe_free_model_hooks()
|
165 |
-
torch.cuda.empty_cache()
|
166 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
4 |
+
from typing import Any, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
# Helper functions
|
7 |
+
def calculate_shift(
|
8 |
+
image_seq_len,
|
9 |
+
base_seq_len: int = 256,
|
10 |
+
max_seq_len: int = 4096,
|
11 |
+
base_shift: float = 0.5,
|
12 |
+
max_shift: float = 1.16,
|
13 |
+
):
|
14 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
15 |
+
b = base_shift - m * base_seq_len
|
16 |
+
mu = image_seq_len * m + b
|
17 |
+
return mu
|
18 |
+
|
19 |
+
def retrieve_timesteps(
|
20 |
+
scheduler,
|
21 |
+
num_inference_steps: Optional[int] = None,
|
22 |
+
device: Optional[Union[str, torch.device]] = None,
|
23 |
+
timesteps: Optional[List[int]] = None,
|
24 |
+
sigmas: Optional[List[float]] = None,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
if timesteps is not None and sigmas is not None:
|
28 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
29 |
+
if timesteps is not None:
|
30 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
31 |
+
timesteps = scheduler.timesteps
|
32 |
+
num_inference_steps = len(timesteps)
|
33 |
+
elif sigmas is not None:
|
34 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
35 |
+
timesteps = scheduler.timesteps
|
36 |
+
num_inference_steps = len(timesteps)
|
37 |
+
else:
|
38 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
39 |
+
timesteps = scheduler.timesteps
|
40 |
+
return timesteps, num_inference_steps
|
41 |
+
|
42 |
+
# FLUX pipeline function
|
43 |
+
@torch.inference_mode()
|
44 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
+
self,
|
46 |
+
prompt: Union[str, List[str]] = None,
|
47 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
+
height: Optional[int] = None,
|
49 |
+
width: Optional[int] = None,
|
50 |
+
num_inference_steps: int = 28,
|
51 |
+
timesteps: List[int] = None,
|
52 |
+
guidance_scale: float = 3.5,
|
53 |
+
num_images_per_prompt: Optional[int] = 1,
|
54 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
55 |
+
latents: Optional[torch.FloatTensor] = None,
|
56 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
+
output_type: Optional[str] = "pil",
|
59 |
+
return_dict: bool = True,
|
60 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
+
max_sequence_length: int = 512,
|
62 |
+
good_vae: Optional[Any] = None,
|
63 |
+
):
|
64 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
66 |
+
|
67 |
+
# 1. Check inputs
|
68 |
+
self.check_inputs(
|
69 |
+
prompt,
|
70 |
+
prompt_2,
|
71 |
+
height,
|
72 |
+
width,
|
73 |
+
prompt_embeds=prompt_embeds,
|
74 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
75 |
+
max_sequence_length=max_sequence_length,
|
76 |
+
)
|
77 |
+
|
78 |
+
self._guidance_scale = guidance_scale
|
79 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
80 |
+
self._interrupt = False
|
81 |
+
|
82 |
+
# 2. Define call parameters
|
83 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
84 |
+
device = self._execution_device
|
85 |
+
|
86 |
+
# 3. Encode prompt
|
87 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
88 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
89 |
+
prompt=prompt,
|
90 |
+
prompt_2=prompt_2,
|
91 |
+
prompt_embeds=prompt_embeds,
|
92 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
93 |
+
device=device,
|
94 |
+
num_images_per_prompt=num_images_per_prompt,
|
95 |
+
max_sequence_length=max_sequence_length,
|
96 |
+
lora_scale=lora_scale,
|
97 |
+
)
|
98 |
+
# 4. Prepare latent variables
|
99 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
100 |
+
latents, latent_image_ids = self.prepare_latents(
|
101 |
+
batch_size * num_images_per_prompt,
|
102 |
+
num_channels_latents,
|
103 |
+
height,
|
104 |
+
width,
|
105 |
+
prompt_embeds.dtype,
|
106 |
+
device,
|
107 |
+
generator,
|
108 |
+
latents,
|
109 |
+
)
|
110 |
+
# 5. Prepare timesteps
|
111 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
112 |
+
image_seq_len = latents.shape[1]
|
113 |
+
mu = calculate_shift(
|
114 |
+
image_seq_len,
|
115 |
+
self.scheduler.config.base_image_seq_len,
|
116 |
+
self.scheduler.config.max_image_seq_len,
|
117 |
+
self.scheduler.config.base_shift,
|
118 |
+
self.scheduler.config.max_shift,
|
119 |
+
)
|
120 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
121 |
+
self.scheduler,
|
122 |
+
num_inference_steps,
|
123 |
+
device,
|
124 |
+
timesteps,
|
125 |
+
sigmas,
|
126 |
+
mu=mu,
|
127 |
+
)
|
128 |
+
self._num_timesteps = len(timesteps)
|
129 |
+
|
130 |
+
# Handle guidance
|
131 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
132 |
+
|
133 |
+
# 6. Denoising loop
|
134 |
+
for i, t in enumerate(timesteps):
|
135 |
+
if self.interrupt:
|
136 |
+
continue
|
137 |
+
|
138 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
+
|
140 |
+
noise_pred = self.transformer(
|
141 |
+
hidden_states=latents,
|
142 |
+
timestep=timestep / 1000,
|
143 |
+
guidance=guidance,
|
144 |
+
pooled_projections=pooled_prompt_embeds,
|
145 |
+
encoder_hidden_states=prompt_embeds,
|
146 |
+
txt_ids=text_ids,
|
147 |
+
img_ids=latent_image_ids,
|
148 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
149 |
+
return_dict=False,
|
150 |
+
)[0]
|
151 |
+
# Yield intermediate result
|
152 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
153 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
154 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
155 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
156 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
157 |
+
torch.cuda.empty_cache()
|
158 |
+
|
159 |
+
|
160 |
+
# Final image using good_vae
|
161 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
+
self.maybe_free_model_hooks()
|
165 |
+
torch.cuda.empty_cache()
|
166 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
mod.py
CHANGED
@@ -1,11 +1,10 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import
|
4 |
-
|
5 |
from pathlib import Path
|
6 |
import gc
|
7 |
import subprocess
|
8 |
-
from PIL import Image
|
9 |
|
10 |
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
@@ -25,6 +24,7 @@ models = [
|
|
25 |
"John6666/copycat-flux-test-fp8-v11-fp8-flux",
|
26 |
"John6666/flux-dev8-anime-nsfw-fp8-flux",
|
27 |
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
|
|
|
28 |
"John6666/niji-style-flux-devfp8-fp8-flux",
|
29 |
"John6666/niji56-style-v3-fp8-flux",
|
30 |
"John6666/lyh-dalle-anime-v12dalle-fp8-flux",
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from PIL import Image
|
|
|
5 |
from pathlib import Path
|
6 |
import gc
|
7 |
import subprocess
|
|
|
8 |
|
9 |
|
10 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
24 |
"John6666/copycat-flux-test-fp8-v11-fp8-flux",
|
25 |
"John6666/flux-dev8-anime-nsfw-fp8-flux",
|
26 |
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
|
27 |
+
"John6666/sumeshiflux1s-v002e-bf16-flux",
|
28 |
"John6666/niji-style-flux-devfp8-fp8-flux",
|
29 |
"John6666/niji56-style-v3-fp8-flux",
|
30 |
"John6666/lyh-dalle-anime-v12dalle-fp8-flux",
|
modutils.py
CHANGED
@@ -39,7 +39,6 @@ def get_local_model_list(dir_path):
|
|
39 |
|
40 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
41 |
url = url.strip()
|
42 |
-
|
43 |
if "drive.google.com" in url:
|
44 |
original_dir = os.getcwd()
|
45 |
os.chdir(directory)
|
@@ -187,10 +186,10 @@ def get_model_id_list():
|
|
187 |
try:
|
188 |
models_likes = []
|
189 |
for author in HF_MODEL_USER_LIKES:
|
190 |
-
models_likes.extend(api.list_models(author=author, cardData=True, sort="likes"))
|
191 |
models_ex = []
|
192 |
for author in HF_MODEL_USER_EX:
|
193 |
-
models_ex = api.list_models(author=author, cardData=True, sort="last_modified")
|
194 |
except Exception as e:
|
195 |
print(f"Error: Failed to list {author}'s models.")
|
196 |
print(e)
|
@@ -200,8 +199,8 @@ def get_model_id_list():
|
|
200 |
anime_models = []
|
201 |
real_models = []
|
202 |
for model in models_ex:
|
203 |
-
if not model.private:
|
204 |
-
anime_models.append(model.id) if
|
205 |
model_ids.extend(anime_models)
|
206 |
model_ids.extend(real_models)
|
207 |
model_id_list = model_ids.copy()
|
@@ -252,6 +251,8 @@ def get_tupled_model_list(model_list):
|
|
252 |
tags = model.tags
|
253 |
info = []
|
254 |
if not 'diffusers' in tags: continue
|
|
|
|
|
255 |
if 'diffusers:StableDiffusionXLPipeline' in tags:
|
256 |
info.append("SDXL")
|
257 |
elif 'diffusers:StableDiffusionPipeline' in tags:
|
|
|
39 |
|
40 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
41 |
url = url.strip()
|
|
|
42 |
if "drive.google.com" in url:
|
43 |
original_dir = os.getcwd()
|
44 |
os.chdir(directory)
|
|
|
186 |
try:
|
187 |
models_likes = []
|
188 |
for author in HF_MODEL_USER_LIKES:
|
189 |
+
models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes"))
|
190 |
models_ex = []
|
191 |
for author in HF_MODEL_USER_EX:
|
192 |
+
models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified")
|
193 |
except Exception as e:
|
194 |
print(f"Error: Failed to list {author}'s models.")
|
195 |
print(e)
|
|
|
199 |
anime_models = []
|
200 |
real_models = []
|
201 |
for model in models_ex:
|
202 |
+
if not model.private and not model.gated and "diffusers:FluxPipeline" not in model.tags:
|
203 |
+
anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
|
204 |
model_ids.extend(anime_models)
|
205 |
model_ids.extend(real_models)
|
206 |
model_id_list = model_ids.copy()
|
|
|
251 |
tags = model.tags
|
252 |
info = []
|
253 |
if not 'diffusers' in tags: continue
|
254 |
+
if 'diffusers:FluxPipeline' in tags:
|
255 |
+
info.append("FLUX.1")
|
256 |
if 'diffusers:StableDiffusionXLPipeline' in tags:
|
257 |
info.append("SDXL")
|
258 |
elif 'diffusers:StableDiffusionPipeline' in tags:
|