def list_uniq(l): return sorted(set(l), key=l.index) def get_status(model_name: str): from huggingface_hub import InferenceClient client = InferenceClient(timeout=10) return client.get_model_status(model_name) def is_loadable(model_name: str, force_gpu: bool = False): try: status = get_status(model_name) except Exception as e: print(e) print(f"Couldn't load {model_name}.") return False gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys() if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state): print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}") return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state) def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=True): from huggingface_hub import HfApi api = HfApi() #default_tags = ["transformers"] default_tags = [] if not sort: sort = "last_modified" models = [] limit = limit * 20 if force_gpu else limit * 5 try: model_infos = api.list_models(author=author, pipeline_tag="text-generation", tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit) except Exception as e: print(f"Error: Failed to list models.") print(e) return models for model in model_infos: if not model.private and not model.gated: if not_tag and not_tag in model.tags or not is_loadable(model.id, force_gpu): continue models.append(model.id) if len(models) == limit: break return models