import PIL import numpy as np class MIDITokenizer: def __init__(self): self.vocab_size = 0 def allocate_ids(size): ids = [self.vocab_size + i for i in range(size)] self.vocab_size += size return ids self.pad_id = allocate_ids(1)[0] self.bos_id = allocate_ids(1)[0] self.eos_id = allocate_ids(1)[0] self.events = { "note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"], "patch_change": ["time1", "time2", "track", "channel", "patch"], "control_change": ["time1", "time2", "track", "channel", "controller", "value"], "set_tempo": ["time1", "time2", "track", "bpm"], } self.event_parameters = { "time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128, "patch": 128, "controller": 128, "value": 128, "bpm": 256 } self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()} self.id_events = {i: e for e, i in self.event_ids.items()} self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()} self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1 def tempo2bpm(self, tempo): tempo = tempo / 10 ** 6 # us to s bpm = 60 / tempo return bpm def bpm2tempo(self, bpm): if bpm == 0: bpm = 1 tempo = int((60 / bpm) * 10 ** 6) return tempo def tokenize(self, midi_score, add_bos_eos=True): ticks_per_beat = midi_score[0] event_list = {} track_num = len(midi_score[1:]) for track_idx, track in enumerate(midi_score[1:129]): for event in track: t = round(16 * event[1] / ticks_per_beat) new_event = [event[0], t // 16, t % 16, track_idx] + event[2:] if event[0] == "note": new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat)) elif event[0] == "set_tempo": new_event[4] = int(self.tempo2bpm(new_event[4])) key = hash(tuple(new_event[:-1])) event_list[key] = new_event event_list = list(event_list.values()) event_list = sorted(event_list, key=lambda e: (e[1] * 16 + e[2]) * track_num + e[3]) midi_seq = [] last_t1 = 0 for event in event_list: name = event[0] if name in self.event_ids: params = event[1:] cur_t1 = params[0] params[0] = params[0] - last_t1 if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): continue tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] for i, p in enumerate(self.events[name])] tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) midi_seq.append(tokens) last_t1 = cur_t1 if add_bos_eos: bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1) eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1) midi_seq = [bos] + midi_seq + [eos] return midi_seq def event2tokens(self, event): name = event[0] params = event[1:] tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] for i, p in enumerate(self.events[name])] tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) return tokens def detokenize(self, midi_seq): ticks_per_beat = 480 tracks_dict = {} t1 = 0 for tokens in midi_seq: if tokens[0] in self.id_events: name = self.id_events[tokens[0]] if len(tokens) <= len(self.events[name]): continue params = tokens[1:] params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])] if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): continue event = [name] + params if name == "set_tempo": event[4] = self.bpm2tempo(event[4]) if event[0] == "note": event[4] = int(event[4] * ticks_per_beat / 16) t1 += event[1] t = t1 * 16 + event[2] t = int(t * ticks_per_beat / 16) track_idx = event[3] if track_idx not in tracks_dict: tracks_dict[track_idx] = [] tracks_dict[track_idx].append([event[0], t] + event[4:]) tracks = list(tracks_dict.values()) for i in range(len(tracks)): track = tracks[i] track = sorted(track, key=lambda e: e[1]) last_note_t = {} for e in reversed(track): if e[0] == "note": t, d, c, p = e[1:5] key = (c, p) if key in last_note_t: d = min(d, max(last_note_t[key] - t, 0)) # to avoid note overlap last_note_t[key] = t e[2] = d tracks[i] = track return [ticks_per_beat, *tracks] def midi2img(self, midi_score): ticks_per_beat = midi_score[0] notes = [] max_time = 1 track_num = len(midi_score[1:]) for track_idx, track in enumerate(midi_score[1:]): for event in track: t = round(16 * event[1] / ticks_per_beat) if event[0] == "note": d = max(1, round(16 * event[2] / ticks_per_beat)) c, p = event[3:5] max_time = max(max_time, t + d + 1) notes.append((track_idx, c, p, t, d)) img = np.zeros((128, max_time, 3), dtype=np.uint8) colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)} for note in notes: tr, c, p, t, d = note img[p, t: t + d] = colors[(tr, c)] img = PIL.Image.fromarray(np.flip(img, 0)) return img