Spaces:
Running
Running
import gradio as gr | |
import asyncio | |
from threading import RLock | |
from pathlib import Path | |
from huggingface_hub import InferenceClient | |
import os | |
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. | |
server_timeout = 600 | |
inference_timeout = 300 | |
lock = RLock() | |
loaded_models = {} | |
model_info_dict = {} | |
def to_list(s): | |
return [x.strip() for x in s.split(",")] | |
def list_sub(a, b): | |
return [e for e in a if e not in b] | |
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
def is_repo_name(s): | |
import re | |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s) | |
def get_status(model_name: str): | |
from huggingface_hub import InferenceClient | |
client = InferenceClient(token=HF_TOKEN, timeout=10) | |
return client.get_model_status(model_name) | |
def is_loadable(model_name: str, force_gpu: bool = False): | |
try: | |
status = get_status(model_name) | |
except Exception as e: | |
print(e) | |
print(f"Couldn't load {model_name}.") | |
return False | |
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys() | |
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state): | |
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}") | |
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state) | |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False): | |
from huggingface_hub import HfApi | |
api = HfApi(token=HF_TOKEN) | |
default_tags = ["diffusers"] | |
if not sort: sort = "last_modified" | |
limit = limit * 20 if check_status and force_gpu else limit * 5 | |
models = [] | |
try: | |
model_infos = api.list_models(author=author, #task="text-to-image", | |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit) | |
except Exception as e: | |
print(f"Error: Failed to list models.") | |
print(e) | |
return models | |
for model in model_infos: | |
if not model.private and not model.gated or HF_TOKEN is not None: | |
loadable = is_loadable(model.id, force_gpu) if check_status else True | |
if not_tag and not_tag in model.tags or not loadable: continue | |
models.append(model.id) | |
if len(models) == limit: break | |
return models | |
def get_t2i_model_info_dict(repo_id: str): | |
from huggingface_hub import HfApi | |
api = HfApi(token=HF_TOKEN) | |
info = {"md": "None"} | |
try: | |
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info | |
model = api.model_info(repo_id=repo_id, token=HF_TOKEN) | |
except Exception as e: | |
print(f"Error: Failed to get {repo_id}'s info.") | |
print(e) | |
return info | |
if model.private or model.gated and HF_TOKEN is None: return info | |
try: | |
tags = model.tags | |
except Exception as e: | |
print(e) | |
return info | |
if not 'diffusers' in model.tags: return info | |
if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1" | |
elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL" | |
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5" | |
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3" | |
else: info["ver"] = "Other" | |
info["url"] = f"https://huggingface.co/{repo_id}/" | |
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else [] | |
info["downloads"] = model.downloads | |
info["likes"] = model.likes | |
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d") | |
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'] | |
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]] | |
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})' | |
return info | |
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None): | |
import shutil | |
from datetime import datetime, timezone, timedelta | |
if image_path is None: return None | |
dt_now = datetime.now(timezone(timedelta(hours=9))) | |
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png" | |
try: | |
if Path(image_path).exists(): | |
png_path = "image.png" | |
if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path) | |
if save_path is not None: | |
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve())) | |
else: | |
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve())) | |
return new_path | |
else: | |
return None | |
except Exception as e: | |
print(e) | |
return None | |
def save_gallery(image_path: str | None, images: list[tuple] | None): | |
if images is None: images = [] | |
files = [i[0] for i in images] | |
if image_path is None: return images, files | |
files.insert(0, str(image_path)) | |
images.insert(0, (str(image_path), Path(image_path).stem)) | |
return images, files | |
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py | |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client | |
from typing import Literal | |
def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None): | |
import httpx | |
import huggingface_hub | |
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError | |
model_url = f"https://huggingface.co/{model_name}" | |
api_url = f"https://api-inference.huggingface.co/models/{model_name}" | |
print(f"Fetching model from: {model_url}") | |
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}) | |
response = httpx.request("GET", api_url, headers=headers) | |
if response.status_code != 200: | |
raise ModelNotFoundError( | |
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter." | |
) | |
p = response.json().get("pipeline_tag") | |
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.") | |
headers["X-Wait-For-Model"] = "true" | |
client = huggingface_hub.InferenceClient(model=model_name, headers=headers, | |
token=hf_token, timeout=server_timeout) | |
inputs = gr.components.Textbox(label="Input") | |
outputs = gr.components.Image(label="Output") | |
fn = client.text_to_image | |
def query_huggingface_inference_endpoints(*data, **kwargs): | |
try: | |
data = fn(*data, **kwargs) # type: ignore | |
except huggingface_hub.utils.HfHubHTTPError as e: | |
if "429" in str(e): | |
raise TooManyRequestsError() from e | |
except Exception as e: | |
raise Exception() from e | |
return data | |
interface_info = { | |
"fn": query_huggingface_inference_endpoints, | |
"inputs": inputs, | |
"outputs": outputs, | |
"title": model_name, | |
} | |
return gr.Interface(**interface_info) | |
def load_model(model_name: str): | |
global loaded_models | |
global model_info_dict | |
if model_name in loaded_models.keys(): return loaded_models[model_name] | |
try: | |
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN) | |
print(f"Loaded: {model_name}") | |
except Exception as e: | |
if model_name in loaded_models.keys(): del loaded_models[model_name] | |
print(f"Failed to load: {model_name}") | |
print(e) | |
return None | |
try: | |
model_info_dict[model_name] = get_t2i_model_info_dict(model_name) | |
print(f"Assigned: {model_name}") | |
except Exception as e: | |
if model_name in model_info_dict.keys(): del model_info_dict[model_name] | |
print(f"Failed to assigned: {model_name}") | |
print(e) | |
return loaded_models[model_name] | |
def load_model_api(model_name: str): | |
global loaded_models | |
global model_info_dict | |
if model_name in loaded_models.keys(): return loaded_models[model_name] | |
try: | |
client = InferenceClient(timeout=5) | |
status = client.get_model_status(model_name, token=HF_TOKEN) | |
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]: | |
print(f"Failed to load by API: {model_name}") | |
return None | |
else: | |
loaded_models[model_name] = InferenceClient(model_name, token=HF_TOKEN, timeout=server_timeout) | |
print(f"Loaded by API: {model_name}") | |
except Exception as e: | |
if model_name in loaded_models.keys(): del loaded_models[model_name] | |
print(f"Failed to load by API: {model_name}") | |
print(e) | |
return None | |
try: | |
model_info_dict[model_name] = get_t2i_model_info_dict(model_name) | |
print(f"Assigned by API: {model_name}") | |
except Exception as e: | |
if model_name in model_info_dict.keys(): del model_info_dict[model_name] | |
print(f"Failed to assigned by API: {model_name}") | |
print(e) | |
return loaded_models[model_name] | |
def load_models(models: list): | |
for model in models: | |
load_model(model) | |
positive_prefix = { | |
"Pony": to_list("score_9, score_8_up, score_7_up"), | |
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"), | |
} | |
positive_suffix = { | |
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"), | |
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"), | |
} | |
negative_prefix = { | |
"Pony": to_list("score_6, score_5, score_4"), | |
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"), | |
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"), | |
} | |
negative_suffix = { | |
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"), | |
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"), | |
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"), | |
} | |
positive_all = negative_all = [] | |
for k, v in (positive_prefix | positive_suffix).items(): | |
positive_all = positive_all + v + [s.replace("_", " ") for s in v] | |
positive_all = list_uniq(positive_all) | |
for k, v in (negative_prefix | negative_suffix).items(): | |
negative_all = negative_all + v + [s.replace("_", " ") for s in v] | |
positive_all = list_uniq(positive_all) | |
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []): | |
def flatten(src): | |
return [item for row in src for item in row] | |
prompts = to_list(prompt) | |
neg_prompts = to_list(neg_prompt) | |
prompts = list_sub(prompts, positive_all) | |
neg_prompts = list_sub(neg_prompts, negative_all) | |
last_empty_p = [""] if not prompts and type != "None" else [] | |
last_empty_np = [""] if not neg_prompts and type != "None" else [] | |
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre]) | |
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf]) | |
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre]) | |
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf]) | |
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p) | |
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np) | |
return prompt, neg_prompt | |
recom_prompt_type = { | |
"None": ([], [], [], []), | |
"Auto": ([], [], [], []), | |
"Common": ([], ["Common"], [], ["Common"]), | |
"Animagine": ([], ["Common", "Anime"], [], ["Common"]), | |
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]), | |
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]), | |
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]), | |
} | |
enable_auto_recom_prompt = False | |
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"): | |
global enable_auto_recom_prompt | |
if type == "Auto": enable_auto_recom_prompt = True | |
else: enable_auto_recom_prompt = False | |
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], [])) | |
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf) | |
def set_recom_prompt_preset(type: str = "None"): | |
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], [])) | |
return pos_pre, pos_suf, neg_pre, neg_suf | |
def get_recom_prompt_type(): | |
type = list(recom_prompt_type.keys()) | |
type.remove("Auto") | |
return type | |
def get_positive_prefix(): | |
return list(positive_prefix.keys()) | |
def get_positive_suffix(): | |
return list(positive_suffix.keys()) | |
def get_negative_prefix(): | |
return list(negative_prefix.keys()) | |
def get_negative_suffix(): | |
return list(negative_suffix.keys()) | |
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []): | |
tag_type = "danbooru" | |
words = pos_pre + pos_suf + neg_pre + neg_suf | |
for word in words: | |
if "Pony" in word: | |
tag_type = "e621" | |
break | |
return tag_type | |
def get_model_info_md(model_name: str): | |
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "") | |
def change_model(model_name: str): | |
load_model_api(model_name) | |
return get_model_info_md(model_name) | |
def warm_model(model_name: str): | |
model = load_model_api(model_name) | |
if model: | |
try: | |
print(f"Warming model: {model_name}") | |
infer_body(model, " ") | |
except Exception as e: | |
print(e) | |
# https://huggingface.co/docs/api-inference/detailed_parameters | |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client | |
def infer_body(client: InferenceClient | gr.Interface | object, model_str: str, prompt: str, neg_prompt: str = "", | |
height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1): | |
png_path = "image.png" | |
kwargs = {} | |
if height > 0: kwargs["height"] = height | |
if width > 0: kwargs["width"] = width | |
if steps > 0: kwargs["num_inference_steps"] = steps | |
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg | |
if seed == -1: kwargs["seed"] = randomize_seed() | |
else: kwargs["seed"] = seed | |
try: | |
if isinstance(client, InferenceClient): | |
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN) | |
elif isinstance(client, gr.Interface): | |
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN) | |
else: return None | |
if isinstance(image, tuple): return None | |
return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed) | |
except Exception as e: | |
print(e) | |
raise Exception() from e | |
async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0, | |
steps: int = 0, cfg: int = 0, seed: int = -1, | |
save_path: str | None = None, timeout: float = inference_timeout): | |
model = load_model(model_name) | |
if not model: return None | |
task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt, | |
height, width, steps, cfg, seed)) | |
await asyncio.sleep(0) | |
try: | |
result = await asyncio.wait_for(task, timeout=timeout) | |
except asyncio.TimeoutError as e: | |
print(e) | |
print(f"Task timed out: {model_name}") | |
if not task.done(): task.cancel() | |
result = None | |
raise Exception(f"Task timed out: {model_name}") from e | |
except Exception as e: | |
print(e) | |
if not task.done(): task.cancel() | |
result = None | |
raise Exception() from e | |
if task.done() and result is not None: | |
with lock: | |
image = rename_image(result, model_name, save_path) | |
return image | |
return None | |
# https://github.com/aio-libs/pytest-aiohttp/issues/8 # also AsyncInferenceClient is buggy. | |
def infer_fn(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0, | |
steps: int = 0, cfg: int = 0, seed: int = -1, | |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None): | |
if model_name == 'NA': | |
return None | |
try: | |
loop = asyncio.get_running_loop() | |
except Exception: | |
loop = asyncio.new_event_loop() | |
try: | |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf) | |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width, | |
steps, cfg, seed, save_path, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
print(e) | |
print(f"Task aborted: {model_name}, Error: {e}") | |
result = None | |
raise gr.Error(f"Task aborted: {model_name}, Error: {e}") | |
finally: | |
loop.close() | |
return result | |
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0, | |
steps: int = 0, cfg: int = 0, seed: int = -1, | |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None): | |
import random | |
if model_name_dummy == 'NA': | |
return None | |
random.seed() | |
model_name = random.choice(list(loaded_models.keys())) | |
try: | |
loop = asyncio.get_running_loop() | |
except Exception: | |
loop = asyncio.new_event_loop() | |
try: | |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf) | |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width, | |
steps, cfg, seed, save_path, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
print(e) | |
print(f"Task aborted: {model_name}, Error: {e}") | |
result = None | |
raise gr.Error(f"Task aborted: {model_name}, Error: {e}") | |
finally: | |
loop.close() | |
return result | |
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1): | |
from PIL import Image, PngImagePlugin | |
import json | |
try: | |
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}} | |
if steps > 0: metadata["num_inference_steps"] = steps | |
if cfg > 0: metadata["guidance_scale"] = cfg | |
if seed != -1: metadata["seed"] = seed | |
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}" | |
metadata_str = json.dumps(metadata) | |
info = PngImagePlugin.PngInfo() | |
info.add_text("metadata", metadata_str) | |
image.save(savefile, "PNG", pnginfo=info) | |
return str(Path(savefile).resolve()) | |
except Exception as e: | |
print(f"Failed to save image file: {e}") | |
raise Exception(f"Failed to save image file:") from e | |
def randomize_seed(): | |
from random import seed, randint | |
MAX_SEED = 2**32-1 | |
seed() | |
rseed = randint(0, MAX_SEED) | |
return rseed | |
from translatepy import Translator | |
translator = Translator() | |
def translate_to_en(input: str): | |
try: | |
output = str(translator.translate(input, 'English')) | |
except Exception as e: | |
output = input | |
print(e) | |
return output | |