John6666 commited on
Commit
f1b8b05
โ€ข
1 Parent(s): d2dc3a3

Upload 13 files

Browse files
README.md CHANGED
@@ -1,12 +1,14 @@
1
- ---
2
- title: Recent Illustrious Models
3
- emoji: ๐Ÿข
4
- colorFrom: green
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
+ ---
2
+ title: 10+ Recent SDXL Illustrious Text-to-Image Models Playground (John6666)
3
+ emoji: ๐Ÿ–ผ๏ธ๐Ÿด๐Ÿ“…
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 5.0.1
8
+ app_file: app.py
9
+ pinned: false
10
+ short_description: Text-to-Image
11
+ license: mit
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from model import models
3
+ from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
4
+ change_model, warm_model, get_model_info_md, loaded_models,
5
+ get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
6
+ get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
7
+ from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
8
+ insert_recom_prompt, compose_prompt_to_copy)
9
+ from tagger.fl2sd3longcap import predict_tags_fl2_sd3
10
+ from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
11
+ from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
12
+ V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
13
+
14
+ max_images = 6
15
+ MAX_SEED = 2**32-1
16
+ load_models(models)
17
+
18
+ css = """
19
+ .model_info { text-align: center; }
20
+ .output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
21
+ .gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
22
+ """
23
+
24
+ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
25
+ with gr.Tab("Image Generator"):
26
+ with gr.Row():
27
+ with gr.Column(scale=10):
28
+ with gr.Group():
29
+ with gr.Accordion("Prompt from Image File", open=False):
30
+ tagger_image = gr.Image(label="Input image", type="pil", format="png", sources=["upload", "clipboard"], height=256)
31
+ with gr.Accordion(label="Advanced options", open=False):
32
+ with gr.Row():
33
+ tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
34
+ tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
35
+ tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
36
+ with gr.Row():
37
+ tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
38
+ tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
39
+ tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
40
+ tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
41
+ with gr.Accordion("Prompt Transformer", open=False):
42
+ with gr.Row():
43
+ v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
44
+ v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
45
+ with gr.Row():
46
+ v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
47
+ v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
48
+ v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
49
+ with gr.Row():
50
+ v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
51
+ v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
52
+ v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
53
+ v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
54
+ v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
55
+ random_prompt = gr.Button(value="Extend ๐ŸŽฒ", variant="secondary")
56
+ prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
57
+ with gr.Accordion("Advanced options", open=False):
58
+ neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
59
+ with gr.Row():
60
+ width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
61
+ height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
62
+ steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
63
+ with gr.Row():
64
+ cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
65
+ seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
66
+ seed_rand = gr.Button("Randomize Seed ๐ŸŽฒ", size="sm", variant="secondary")
67
+ recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
68
+ with gr.Row():
69
+ positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
70
+ positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
71
+ negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
72
+ negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
73
+ with gr.Row():
74
+ image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
75
+ trans_prompt = gr.Button(value="Translate ๐Ÿ“", variant="secondary", size="sm", scale=2)
76
+ clear_prompt = gr.Button(value="Clear ๐Ÿ—‘๏ธ", variant="secondary", size="sm", scale=1)
77
+
78
+ with gr.Row():
79
+ run_button = gr.Button("Generate Image", variant="primary", scale=6)
80
+ random_button = gr.Button("Random Model ๐ŸŽฒ", variant="secondary", scale=3)
81
+ #stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
82
+ with gr.Group():
83
+ model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
84
+ model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
85
+ with gr.Column(scale=10):
86
+ with gr.Group():
87
+ with gr.Row():
88
+ output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
89
+ show_download_button=True, show_share_button=False, show_label=False,
90
+ interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
91
+ with gr.Group():
92
+ results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
93
+ container=True, format="png", object_fit="cover", columns=2, rows=2)
94
+ image_files = gr.Files(label="Download", interactive=False)
95
+ clear_results = gr.Button("Clear Gallery / Download ๐Ÿ—‘๏ธ", variant="secondary")
96
+ with gr.Column():
97
+ examples = gr.Examples(
98
+ examples = [
99
+ ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
100
+ ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
101
+ ["kafuu chino, 1girl, solo"],
102
+ ["1girl"],
103
+ ["beautiful sunset"],
104
+ ],
105
+ inputs=[prompt],
106
+ cache_examples=False,
107
+ )
108
+ with gr.Tab("PNG Info"):
109
+ def extract_exif_data(image):
110
+ if image is None: return ""
111
+ try:
112
+ metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
113
+ for key in metadata_keys:
114
+ if key in image.info:
115
+ return image.info[key]
116
+ return str(image.info)
117
+ except Exception as e:
118
+ return f"Error extracting metadata: {str(e)}"
119
+ with gr.Row():
120
+ with gr.Column():
121
+ image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
122
+ with gr.Column():
123
+ result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
124
+
125
+ image_metadata.change(
126
+ fn=extract_exif_data,
127
+ inputs=[image_metadata],
128
+ outputs=[result_metadata],
129
+ )
130
+ gr.Markdown(
131
+ f"""This demo was created in reference to the following demos.<br>
132
+ [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood),
133
+ [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL),
134
+ [Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).
135
+ """
136
+ )
137
+ gr.DuplicateButton(value="Duplicate Space")
138
+ gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
139
+
140
+ #gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
141
+ model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
142
+ .success(warm_model, [model_name], None, queue=False, show_api=False)
143
+ for i, o in enumerate(output):
144
+ img_i = gr.Number(i, visible=False)
145
+ image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
146
+ gen_event = gr.on(triggers=[run_button.click, prompt.submit],
147
+ fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
148
+ inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
149
+ positive_prefix, positive_suffix, negative_prefix, negative_suffix],
150
+ outputs=[o], queue=False, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
151
+ gen_event2 = gr.on(triggers=[random_button.click],
152
+ fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
153
+ inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
154
+ positive_prefix, positive_suffix, negative_prefix, negative_suffix],
155
+ outputs=[o], queue=False, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
156
+ o.change(save_gallery, [o, results], [results, image_files], show_api=False)
157
+ #stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
158
+
159
+ clear_prompt.click(lambda: (None, None, None, None), None, [prompt, neg_prompt, v2_character, v2_series], queue=False, show_api=False)
160
+ clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
161
+ recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
162
+ [positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
163
+ seed_rand.click(randomize_seed, None, [seed], queue=False, show_api=False)
164
+ trans_prompt.click(translate_to_en, [prompt], [prompt], queue=False, show_api=False)\
165
+ .then(translate_to_en, [neg_prompt], [neg_prompt], queue=False, show_api=False)
166
+
167
+ random_prompt.click(
168
+ v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
169
+ v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
170
+ ).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
171
+ ).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
172
+ tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
173
+ ).success(
174
+ predict_tags_wd,
175
+ [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
176
+ [v2_series, v2_character, prompt, v2_copy],
177
+ show_api=False,
178
+ ).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
179
+ ).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
180
+ ).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
181
+ ).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
182
+ ).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
183
+
184
+ #demo.queue(default_concurrency_limit=200, max_size=200)
185
+ demo.launch(max_threads=400)
model.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from multit2i import find_model_list
2
+
3
+
4
+ models = find_model_list("John6666", ["illustrious"], "", "last_modified", 250)
5
+
6
+
7
+ # Examples:
8
+ #models = ['yodayo-ai/kivotos-xl-2.0', 'yodayo-ai/holodayo-xl-2.1'] # specific models
9
+ #models = find_model_list("John6666", [], "", "last_modified", 20) # John6666's latest 20 models
10
+ #models = find_model_list("John6666", ["anime"], "", "last_modified", 20) # John6666's latest 20 models with 'anime' tag
11
+ #models = find_model_list("John6666", [], "anime", "last_modified", 20) # John6666's latest 20 models without 'anime' tag
12
+ #models = find_model_list("", [], "", "last_modified", 20) # latest 20 text-to-image models of huggingface
13
+ #models = find_model_list("", [], "", "downloads", 20) # monthly most downloaded 20 text-to-image models of huggingface
multit2i.py ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import asyncio
3
+ from threading import RLock
4
+ from pathlib import Path
5
+ from huggingface_hub import InferenceClient
6
+ import os
7
+
8
+
9
+ HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
10
+ server_timeout = 600
11
+ inference_timeout = 300
12
+
13
+
14
+ lock = RLock()
15
+ loaded_models = {}
16
+ model_info_dict = {}
17
+
18
+
19
+ def to_list(s):
20
+ return [x.strip() for x in s.split(",")]
21
+
22
+
23
+ def list_sub(a, b):
24
+ return [e for e in a if e not in b]
25
+
26
+
27
+ def list_uniq(l):
28
+ return sorted(set(l), key=l.index)
29
+
30
+
31
+ def is_repo_name(s):
32
+ import re
33
+ return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
34
+
35
+
36
+ def get_status(model_name: str):
37
+ from huggingface_hub import InferenceClient
38
+ client = InferenceClient(token=HF_TOKEN, timeout=10)
39
+ return client.get_model_status(model_name)
40
+
41
+
42
+ def is_loadable(model_name: str, force_gpu: bool = False):
43
+ try:
44
+ status = get_status(model_name)
45
+ except Exception as e:
46
+ print(e)
47
+ print(f"Couldn't load {model_name}.")
48
+ return False
49
+ gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
50
+ if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
51
+ print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
52
+ return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
53
+
54
+
55
+ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
56
+ from huggingface_hub import HfApi
57
+ api = HfApi(token=HF_TOKEN)
58
+ default_tags = ["diffusers"]
59
+ if not sort: sort = "last_modified"
60
+ limit = limit * 20 if check_status and force_gpu else limit * 5
61
+ models = []
62
+ try:
63
+ model_infos = api.list_models(author=author, #task="text-to-image",
64
+ tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
65
+ except Exception as e:
66
+ print(f"Error: Failed to list models.")
67
+ print(e)
68
+ return models
69
+ for model in model_infos:
70
+ if not model.private and not model.gated or HF_TOKEN is not None:
71
+ loadable = is_loadable(model.id, force_gpu) if check_status else True
72
+ if not_tag and not_tag in model.tags or not loadable: continue
73
+ models.append(model.id)
74
+ if len(models) == limit: break
75
+ return models
76
+
77
+
78
+ def get_t2i_model_info_dict(repo_id: str):
79
+ from huggingface_hub import HfApi
80
+ api = HfApi(token=HF_TOKEN)
81
+ info = {"md": "None"}
82
+ try:
83
+ if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
84
+ model = api.model_info(repo_id=repo_id, token=HF_TOKEN)
85
+ except Exception as e:
86
+ print(f"Error: Failed to get {repo_id}'s info.")
87
+ print(e)
88
+ return info
89
+ if model.private or model.gated and HF_TOKEN is None: return info
90
+ try:
91
+ tags = model.tags
92
+ except Exception as e:
93
+ print(e)
94
+ return info
95
+ if not 'diffusers' in model.tags: return info
96
+ if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1"
97
+ elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
98
+ elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
99
+ elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
100
+ else: info["ver"] = "Other"
101
+ info["url"] = f"https://huggingface.co/{repo_id}/"
102
+ info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
103
+ info["downloads"] = model.downloads
104
+ info["likes"] = model.likes
105
+ info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
106
+ un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
107
+ descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'โค: {info["likes"]}'] + [info["last_modified"]]
108
+ info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
109
+ return info
110
+
111
+
112
+ def rename_image(image_path: str | None, model_name: str, save_path: str | None = None):
113
+ import shutil
114
+ from datetime import datetime, timezone, timedelta
115
+ if image_path is None: return None
116
+ dt_now = datetime.now(timezone(timedelta(hours=9)))
117
+ filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
118
+ try:
119
+ if Path(image_path).exists():
120
+ png_path = "image.png"
121
+ if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path)
122
+ if save_path is not None:
123
+ new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
124
+ else:
125
+ new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
126
+ return new_path
127
+ else:
128
+ return None
129
+ except Exception as e:
130
+ print(e)
131
+ return None
132
+
133
+
134
+ def save_gallery(image_path: str | None, images: list[tuple] | None):
135
+ if images is None: images = []
136
+ files = [i[0] for i in images]
137
+ if image_path is None: return images, files
138
+ files.insert(0, str(image_path))
139
+ images.insert(0, (str(image_path), Path(image_path).stem))
140
+ return images, files
141
+
142
+
143
+ # https://github.com/gradio-app/gradio/blob/main/gradio/external.py
144
+ # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
145
+ from typing import Literal
146
+ def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None):
147
+ import httpx
148
+ import huggingface_hub
149
+ from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
150
+ model_url = f"https://huggingface.co/{model_name}"
151
+ api_url = f"https://api-inference.huggingface.co/models/{model_name}"
152
+ print(f"Fetching model from: {model_url}")
153
+
154
+ headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
155
+ response = httpx.request("GET", api_url, headers=headers)
156
+ if response.status_code != 200:
157
+ raise ModelNotFoundError(
158
+ f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
159
+ )
160
+ p = response.json().get("pipeline_tag")
161
+ if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
162
+ headers["X-Wait-For-Model"] = "true"
163
+ client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
164
+ token=hf_token, timeout=server_timeout)
165
+ inputs = gr.components.Textbox(label="Input")
166
+ outputs = gr.components.Image(label="Output")
167
+ fn = client.text_to_image
168
+
169
+ def query_huggingface_inference_endpoints(*data, **kwargs):
170
+ try:
171
+ data = fn(*data, **kwargs) # type: ignore
172
+ except huggingface_hub.utils.HfHubHTTPError as e:
173
+ if "429" in str(e):
174
+ raise TooManyRequestsError() from e
175
+ except Exception as e:
176
+ raise Exception() from e
177
+ return data
178
+
179
+ interface_info = {
180
+ "fn": query_huggingface_inference_endpoints,
181
+ "inputs": inputs,
182
+ "outputs": outputs,
183
+ "title": model_name,
184
+ }
185
+ return gr.Interface(**interface_info)
186
+
187
+
188
+ def load_model(model_name: str):
189
+ global loaded_models
190
+ global model_info_dict
191
+ if model_name in loaded_models.keys(): return loaded_models[model_name]
192
+ try:
193
+ loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
194
+ print(f"Loaded: {model_name}")
195
+ except Exception as e:
196
+ if model_name in loaded_models.keys(): del loaded_models[model_name]
197
+ print(f"Failed to load: {model_name}")
198
+ print(e)
199
+ return None
200
+ try:
201
+ model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
202
+ print(f"Assigned: {model_name}")
203
+ except Exception as e:
204
+ if model_name in model_info_dict.keys(): del model_info_dict[model_name]
205
+ print(f"Failed to assigned: {model_name}")
206
+ print(e)
207
+ return loaded_models[model_name]
208
+
209
+
210
+ def load_model_api(model_name: str):
211
+ global loaded_models
212
+ global model_info_dict
213
+ if model_name in loaded_models.keys(): return loaded_models[model_name]
214
+ try:
215
+ client = InferenceClient(timeout=5)
216
+ status = client.get_model_status(model_name, token=HF_TOKEN)
217
+ if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
218
+ print(f"Failed to load by API: {model_name}")
219
+ return None
220
+ else:
221
+ loaded_models[model_name] = InferenceClient(model_name, token=HF_TOKEN, timeout=server_timeout)
222
+ print(f"Loaded by API: {model_name}")
223
+ except Exception as e:
224
+ if model_name in loaded_models.keys(): del loaded_models[model_name]
225
+ print(f"Failed to load by API: {model_name}")
226
+ print(e)
227
+ return None
228
+ try:
229
+ model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
230
+ print(f"Assigned by API: {model_name}")
231
+ except Exception as e:
232
+ if model_name in model_info_dict.keys(): del model_info_dict[model_name]
233
+ print(f"Failed to assigned by API: {model_name}")
234
+ print(e)
235
+ return loaded_models[model_name]
236
+
237
+
238
+ def load_models(models: list):
239
+ for model in models:
240
+ load_model(model)
241
+
242
+
243
+ positive_prefix = {
244
+ "Pony": to_list("score_9, score_8_up, score_7_up"),
245
+ "Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
246
+ }
247
+ positive_suffix = {
248
+ "Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
249
+ "Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
250
+ }
251
+ negative_prefix = {
252
+ "Pony": to_list("score_6, score_5, score_4"),
253
+ "Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
254
+ "Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
255
+ }
256
+ negative_suffix = {
257
+ "Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
258
+ "Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
259
+ "Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
260
+ }
261
+ positive_all = negative_all = []
262
+ for k, v in (positive_prefix | positive_suffix).items():
263
+ positive_all = positive_all + v + [s.replace("_", " ") for s in v]
264
+ positive_all = list_uniq(positive_all)
265
+ for k, v in (negative_prefix | negative_suffix).items():
266
+ negative_all = negative_all + v + [s.replace("_", " ") for s in v]
267
+ positive_all = list_uniq(positive_all)
268
+
269
+
270
+ def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
271
+ def flatten(src):
272
+ return [item for row in src for item in row]
273
+ prompts = to_list(prompt)
274
+ neg_prompts = to_list(neg_prompt)
275
+ prompts = list_sub(prompts, positive_all)
276
+ neg_prompts = list_sub(neg_prompts, negative_all)
277
+ last_empty_p = [""] if not prompts and type != "None" else []
278
+ last_empty_np = [""] if not neg_prompts and type != "None" else []
279
+ prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
280
+ suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
281
+ prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
282
+ suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
283
+ prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
284
+ neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
285
+ return prompt, neg_prompt
286
+
287
+
288
+ recom_prompt_type = {
289
+ "None": ([], [], [], []),
290
+ "Auto": ([], [], [], []),
291
+ "Common": ([], ["Common"], [], ["Common"]),
292
+ "Animagine": ([], ["Common", "Anime"], [], ["Common"]),
293
+ "Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
294
+ "Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
295
+ "Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
296
+ }
297
+
298
+
299
+ enable_auto_recom_prompt = False
300
+ def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
301
+ global enable_auto_recom_prompt
302
+ if type == "Auto": enable_auto_recom_prompt = True
303
+ else: enable_auto_recom_prompt = False
304
+ pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
305
+ return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
306
+
307
+
308
+ def set_recom_prompt_preset(type: str = "None"):
309
+ pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
310
+ return pos_pre, pos_suf, neg_pre, neg_suf
311
+
312
+
313
+ def get_recom_prompt_type():
314
+ type = list(recom_prompt_type.keys())
315
+ type.remove("Auto")
316
+ return type
317
+
318
+
319
+ def get_positive_prefix():
320
+ return list(positive_prefix.keys())
321
+
322
+
323
+ def get_positive_suffix():
324
+ return list(positive_suffix.keys())
325
+
326
+
327
+ def get_negative_prefix():
328
+ return list(negative_prefix.keys())
329
+
330
+
331
+ def get_negative_suffix():
332
+ return list(negative_suffix.keys())
333
+
334
+
335
+ def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
336
+ tag_type = "danbooru"
337
+ words = pos_pre + pos_suf + neg_pre + neg_suf
338
+ for word in words:
339
+ if "Pony" in word:
340
+ tag_type = "e621"
341
+ break
342
+ return tag_type
343
+
344
+
345
+ def get_model_info_md(model_name: str):
346
+ if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
347
+
348
+
349
+ def change_model(model_name: str):
350
+ load_model_api(model_name)
351
+ return get_model_info_md(model_name)
352
+
353
+
354
+ def warm_model(model_name: str):
355
+ model = load_model_api(model_name)
356
+ if model:
357
+ try:
358
+ print(f"Warming model: {model_name}")
359
+ infer_body(model, " ")
360
+ except Exception as e:
361
+ print(e)
362
+
363
+
364
+ # https://huggingface.co/docs/api-inference/detailed_parameters
365
+ # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
366
+ def infer_body(client: InferenceClient | gr.Interface | object, model_str: str, prompt: str, neg_prompt: str = "",
367
+ height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1):
368
+ png_path = "image.png"
369
+ kwargs = {}
370
+ if height > 0: kwargs["height"] = height
371
+ if width > 0: kwargs["width"] = width
372
+ if steps > 0: kwargs["num_inference_steps"] = steps
373
+ if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
374
+ if seed == -1: kwargs["seed"] = randomize_seed()
375
+ else: kwargs["seed"] = seed
376
+ try:
377
+ if isinstance(client, InferenceClient):
378
+ image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
379
+ elif isinstance(client, gr.Interface):
380
+ image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
381
+ else: return None
382
+ if isinstance(image, tuple): return None
383
+ return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed)
384
+ except Exception as e:
385
+ print(e)
386
+ raise Exception() from e
387
+
388
+
389
+ async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0,
390
+ steps: int = 0, cfg: int = 0, seed: int = -1,
391
+ save_path: str | None = None, timeout: float = inference_timeout):
392
+ model = load_model(model_name)
393
+ if not model: return None
394
+ task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt,
395
+ height, width, steps, cfg, seed))
396
+ await asyncio.sleep(0)
397
+ try:
398
+ result = await asyncio.wait_for(task, timeout=timeout)
399
+ except asyncio.TimeoutError as e:
400
+ print(e)
401
+ print(f"Task timed out: {model_name}")
402
+ if not task.done(): task.cancel()
403
+ result = None
404
+ raise Exception(f"Task timed out: {model_name}") from e
405
+ except Exception as e:
406
+ print(e)
407
+ if not task.done(): task.cancel()
408
+ result = None
409
+ raise Exception() from e
410
+ if task.done() and result is not None:
411
+ with lock:
412
+ image = rename_image(result, model_name, save_path)
413
+ return image
414
+ return None
415
+
416
+
417
+ # https://github.com/aio-libs/pytest-aiohttp/issues/8 # also AsyncInferenceClient is buggy.
418
+ def infer_fn(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
419
+ steps: int = 0, cfg: int = 0, seed: int = -1,
420
+ pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
421
+ if model_name == 'NA':
422
+ return None
423
+ try:
424
+ loop = asyncio.get_running_loop()
425
+ except Exception:
426
+ loop = asyncio.new_event_loop()
427
+ try:
428
+ prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
429
+ result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
430
+ steps, cfg, seed, save_path, inference_timeout))
431
+ except (Exception, asyncio.CancelledError) as e:
432
+ print(e)
433
+ print(f"Task aborted: {model_name}, Error: {e}")
434
+ result = None
435
+ raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
436
+ finally:
437
+ loop.close()
438
+ return result
439
+
440
+
441
+ def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,
442
+ steps: int = 0, cfg: int = 0, seed: int = -1,
443
+ pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
444
+ import random
445
+ if model_name_dummy == 'NA':
446
+ return None
447
+ random.seed()
448
+ model_name = random.choice(list(loaded_models.keys()))
449
+ try:
450
+ loop = asyncio.get_running_loop()
451
+ except Exception:
452
+ loop = asyncio.new_event_loop()
453
+ try:
454
+ prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
455
+ result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
456
+ steps, cfg, seed, save_path, inference_timeout))
457
+ except (Exception, asyncio.CancelledError) as e:
458
+ print(e)
459
+ print(f"Task aborted: {model_name}, Error: {e}")
460
+ result = None
461
+ raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
462
+ finally:
463
+ loop.close()
464
+ return result
465
+
466
+
467
+ def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
468
+ from PIL import Image, PngImagePlugin
469
+ import json
470
+ try:
471
+ metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
472
+ if steps > 0: metadata["num_inference_steps"] = steps
473
+ if cfg > 0: metadata["guidance_scale"] = cfg
474
+ if seed != -1: metadata["seed"] = seed
475
+ if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
476
+ metadata_str = json.dumps(metadata)
477
+ info = PngImagePlugin.PngInfo()
478
+ info.add_text("metadata", metadata_str)
479
+ image.save(savefile, "PNG", pnginfo=info)
480
+ return str(Path(savefile).resolve())
481
+ except Exception as e:
482
+ print(f"Failed to save image file: {e}")
483
+ raise Exception(f"Failed to save image file:") from e
484
+
485
+
486
+ def randomize_seed():
487
+ from random import seed, randint
488
+ MAX_SEED = 2**32-1
489
+ seed()
490
+ rseed = randint(0, MAX_SEED)
491
+ return rseed
492
+
493
+
494
+ from translatepy import Translator
495
+ translator = Translator()
496
+ def translate_to_en(input: str):
497
+ try:
498
+ output = str(translator.translate(input, 'English'))
499
+ except Exception as e:
500
+ output = input
501
+ print(e)
502
+ return output
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub
2
+ torch==2.2.0
3
+ torchvision
4
+ accelerate
5
+ transformers==4.44.0
6
+ optimum[onnxruntime]
7
+ dartrs
8
+ translatepy
9
+ timm
tagger/character_series_dict.csv ADDED
The diff for this file is too large to render. See raw diff
 
tagger/danbooru_e621.csv ADDED
The diff for this file is too large to render. See raw diff
 
tagger/fl2sd3longcap.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ import re
4
+ from PIL import Image
5
+ import torch
6
+
7
+ import subprocess
8
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
9
+
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ try:
13
+ fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cpu").eval()
14
+ fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
15
+ except Exception as e:
16
+ print(e)
17
+ fl_model = fl_processor = None
18
+
19
+ def fl_modify_caption(caption: str) -> str:
20
+ """
21
+ Removes specific prefixes from captions if present, otherwise returns the original caption.
22
+ Args:
23
+ caption (str): A string containing a caption.
24
+ Returns:
25
+ str: The caption with the prefix removed if it was present, or the original caption.
26
+ """
27
+ # Define the prefixes to remove
28
+ prefix_substrings = [
29
+ ('captured from ', ''),
30
+ ('captured at ', '')
31
+ ]
32
+
33
+ # Create a regex pattern to match any of the prefixes
34
+ pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
35
+ replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings}
36
+
37
+ # Function to replace matched prefix with its corresponding replacement
38
+ def replace_fn(match):
39
+ return replacers[match.group(0).lower()]
40
+
41
+ # Apply the regex to the caption
42
+ modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
43
+
44
+ # If the caption was modified, return the modified version; otherwise, return the original
45
+ return modified_caption if modified_caption != caption else caption
46
+
47
+
48
+ @spaces.GPU(duration=30)
49
+ def fl_run_example(image):
50
+ task_prompt = "<DESCRIPTION>"
51
+ prompt = task_prompt + "Describe this image in great detail."
52
+
53
+ # Ensure the image is in RGB mode
54
+ if image.mode != "RGB":
55
+ image = image.convert("RGB")
56
+
57
+ fl_model.to(device)
58
+ inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device)
59
+ generated_ids = fl_model.generate(
60
+ input_ids=inputs["input_ids"],
61
+ pixel_values=inputs["pixel_values"],
62
+ max_new_tokens=1024,
63
+ num_beams=3
64
+ )
65
+ fl_model.to("cpu")
66
+ generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
67
+ parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
68
+ return fl_modify_caption(parsed_answer["<DESCRIPTION>"])
69
+
70
+
71
+ def predict_tags_fl2_sd3(image: Image.Image, input_tags: str, algo: list[str]):
72
+ def to_list(s):
73
+ return [x.strip() for x in s.split(",") if not s == ""]
74
+
75
+ def list_uniq(l):
76
+ return sorted(set(l), key=l.index)
77
+
78
+ if not "Use Florence-2-SD3-Long-Captioner" in algo:
79
+ return input_tags
80
+ tag_list = list_uniq(to_list(input_tags) + to_list(fl_run_example(image) + ", "))
81
+ tag_list.remove("")
82
+ return ", ".join(tag_list)
tagger/output.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+
4
+ @dataclass
5
+ class UpsamplingOutput:
6
+ upsampled_tags: str
7
+
8
+ copyright_tags: str
9
+ character_tags: str
10
+ general_tags: str
11
+ rating_tag: str
12
+ aspect_ratio_tag: str
13
+ length_tag: str
14
+ identity_tag: str
15
+
16
+ elapsed_time: float = 0.0
tagger/tag_group.csv ADDED
The diff for this file is too large to render. See raw diff
 
tagger/tagger.py ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from PIL import Image
3
+ import torch
4
+ import gradio as gr
5
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
6
+ from pathlib import Path
7
+
8
+
9
+ WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
10
+ WD_MODEL_NAME = WD_MODEL_NAMES[0]
11
+
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ default_device = device
14
+
15
+ try:
16
+ wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True).to(default_device).eval()
17
+ wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
18
+ except Exception as e:
19
+ print(e)
20
+ wd_model = wd_processor = None
21
+
22
+ def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
23
+ return (
24
+ [f"1{noun}"]
25
+ + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
26
+ + [f"{maximum+1}+{noun}s"]
27
+ )
28
+
29
+
30
+ PEOPLE_TAGS = (
31
+ _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
32
+ )
33
+
34
+
35
+ RATING_MAP = {
36
+ "sfw": "safe",
37
+ "general": "safe",
38
+ "sensitive": "sensitive",
39
+ "questionable": "nsfw",
40
+ "explicit": "explicit, nsfw",
41
+ }
42
+ DANBOORU_TO_E621_RATING_MAP = {
43
+ "sfw": "rating_safe",
44
+ "general": "rating_safe",
45
+ "safe": "rating_safe",
46
+ "sensitive": "rating_safe",
47
+ "nsfw": "rating_explicit",
48
+ "explicit, nsfw": "rating_explicit",
49
+ "explicit": "rating_explicit",
50
+ "rating:safe": "rating_safe",
51
+ "rating:general": "rating_safe",
52
+ "rating:sensitive": "rating_safe",
53
+ "rating:questionable, nsfw": "rating_explicit",
54
+ "rating:explicit, nsfw": "rating_explicit",
55
+ }
56
+
57
+
58
+ # https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
59
+ kaomojis = [
60
+ "0_0",
61
+ "(o)_(o)",
62
+ "+_+",
63
+ "+_-",
64
+ "._.",
65
+ "<o>_<o>",
66
+ "<|>_<|>",
67
+ "=_=",
68
+ ">_<",
69
+ "3_3",
70
+ "6_9",
71
+ ">_o",
72
+ "@_@",
73
+ "^_^",
74
+ "o_o",
75
+ "u_u",
76
+ "x_x",
77
+ "|_|",
78
+ "||_||",
79
+ ]
80
+
81
+
82
+ def replace_underline(x: str):
83
+ return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
84
+
85
+
86
+ def to_list(s):
87
+ return [x.strip() for x in s.split(",") if not s == ""]
88
+
89
+
90
+ def list_sub(a, b):
91
+ return [e for e in a if e not in b]
92
+
93
+
94
+ def list_uniq(l):
95
+ return sorted(set(l), key=l.index)
96
+
97
+
98
+ def load_dict_from_csv(filename):
99
+ dict = {}
100
+ if not Path(filename).exists():
101
+ if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
102
+ else: return dict
103
+ try:
104
+ with open(filename, 'r', encoding="utf-8") as f:
105
+ lines = f.readlines()
106
+ except Exception:
107
+ print(f"Failed to open dictionary file: {filename}")
108
+ return dict
109
+ for line in lines:
110
+ parts = line.strip().split(',')
111
+ dict[parts[0]] = parts[1]
112
+ return dict
113
+
114
+
115
+ anime_series_dict = load_dict_from_csv('character_series_dict.csv')
116
+
117
+
118
+ def character_list_to_series_list(character_list):
119
+ output_series_tag = []
120
+ series_tag = ""
121
+ series_dict = anime_series_dict
122
+ for tag in character_list:
123
+ series_tag = series_dict.get(tag, "")
124
+ if tag.endswith(")"):
125
+ tags = tag.split("(")
126
+ character_tag = "(".join(tags[:-1])
127
+ if character_tag.endswith(" "):
128
+ character_tag = character_tag[:-1]
129
+ series_tag = tags[-1].replace(")", "")
130
+
131
+ if series_tag:
132
+ output_series_tag.append(series_tag)
133
+
134
+ return output_series_tag
135
+
136
+
137
+ def select_random_character(series: str, character: str):
138
+ from random import seed, randrange
139
+ seed()
140
+ character_list = list(anime_series_dict.keys())
141
+ character = character_list[randrange(len(character_list) - 1)]
142
+ series = anime_series_dict.get(character.split(",")[0].strip(), "")
143
+ return series, character
144
+
145
+
146
+ def danbooru_to_e621(dtag, e621_dict):
147
+ def d_to_e(match, e621_dict):
148
+ dtag = match.group(0)
149
+ etag = e621_dict.get(replace_underline(dtag), "")
150
+ if etag:
151
+ return etag
152
+ else:
153
+ return dtag
154
+
155
+ import re
156
+ tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
157
+ return tag
158
+
159
+
160
+ danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
161
+
162
+
163
+ def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
164
+ if prompt_type == "danbooru": return input_prompt
165
+ tags = input_prompt.split(",") if input_prompt else []
166
+ people_tags: list[str] = []
167
+ other_tags: list[str] = []
168
+ rating_tags: list[str] = []
169
+
170
+ e621_dict = danbooru_to_e621_dict
171
+ for tag in tags:
172
+ tag = replace_underline(tag)
173
+ tag = danbooru_to_e621(tag, e621_dict)
174
+ if tag in PEOPLE_TAGS:
175
+ people_tags.append(tag)
176
+ elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
177
+ rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
178
+ else:
179
+ other_tags.append(tag)
180
+
181
+ rating_tags = sorted(set(rating_tags), key=rating_tags.index)
182
+ rating_tags = [rating_tags[0]] if rating_tags else []
183
+ rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
184
+
185
+ output_prompt = ", ".join(people_tags + other_tags + rating_tags)
186
+
187
+ return output_prompt
188
+
189
+
190
+ from translatepy import Translator
191
+ translator = Translator()
192
+ def translate_prompt_old(prompt: str = ""):
193
+ def translate_to_english(input: str):
194
+ try:
195
+ output = str(translator.translate(input, 'English'))
196
+ except Exception as e:
197
+ output = input
198
+ print(e)
199
+ return output
200
+
201
+ def is_japanese(s):
202
+ import unicodedata
203
+ for ch in s:
204
+ name = unicodedata.name(ch, "")
205
+ if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
206
+ return True
207
+ return False
208
+
209
+ def to_list(s):
210
+ return [x.strip() for x in s.split(",")]
211
+
212
+ prompts = to_list(prompt)
213
+ outputs = []
214
+ for p in prompts:
215
+ p = translate_to_english(p) if is_japanese(p) else p
216
+ outputs.append(p)
217
+
218
+ return ", ".join(outputs)
219
+
220
+
221
+ def translate_prompt(input: str):
222
+ try:
223
+ output = str(translator.translate(input, 'English'))
224
+ except Exception as e:
225
+ output = input
226
+ print(e)
227
+ return output
228
+
229
+
230
+ def translate_prompt_to_ja(prompt: str = ""):
231
+ def translate_to_japanese(input: str):
232
+ try:
233
+ output = str(translator.translate(input, 'Japanese'))
234
+ except Exception as e:
235
+ output = input
236
+ print(e)
237
+ return output
238
+
239
+ def is_japanese(s):
240
+ import unicodedata
241
+ for ch in s:
242
+ name = unicodedata.name(ch, "")
243
+ if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
244
+ return True
245
+ return False
246
+
247
+ def to_list(s):
248
+ return [x.strip() for x in s.split(",")]
249
+
250
+ prompts = to_list(prompt)
251
+ outputs = []
252
+ for p in prompts:
253
+ p = translate_to_japanese(p) if not is_japanese(p) else p
254
+ outputs.append(p)
255
+
256
+ return ", ".join(outputs)
257
+
258
+
259
+ def tags_to_ja(itag, dict):
260
+ def t_to_j(match, dict):
261
+ tag = match.group(0)
262
+ ja = dict.get(replace_underline(tag), "")
263
+ if ja:
264
+ return ja
265
+ else:
266
+ return tag
267
+
268
+ import re
269
+ tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
270
+
271
+ return tag
272
+
273
+
274
+ def convert_tags_to_ja(input_prompt: str = ""):
275
+ tags = input_prompt.split(",") if input_prompt else []
276
+ out_tags = []
277
+
278
+ tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
279
+ dict = tags_to_ja_dict
280
+ for tag in tags:
281
+ tag = replace_underline(tag)
282
+ tag = tags_to_ja(tag, dict)
283
+ out_tags.append(tag)
284
+
285
+ return ", ".join(out_tags)
286
+
287
+
288
+ enable_auto_recom_prompt = True
289
+
290
+
291
+ animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
292
+ animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
293
+ pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
294
+ pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
295
+ other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
296
+ other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
297
+ default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
298
+ default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
299
+ def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
300
+ global enable_auto_recom_prompt
301
+ prompts = to_list(prompt)
302
+ neg_prompts = to_list(neg_prompt)
303
+
304
+ prompts = list_sub(prompts, animagine_ps + pony_ps)
305
+ neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
306
+
307
+ last_empty_p = [""] if not prompts and type != "None" else []
308
+ last_empty_np = [""] if not neg_prompts and type != "None" else []
309
+
310
+ if type == "Auto":
311
+ enable_auto_recom_prompt = True
312
+ else:
313
+ enable_auto_recom_prompt = False
314
+ if type == "Animagine":
315
+ prompts = prompts + animagine_ps
316
+ neg_prompts = neg_prompts + animagine_nps
317
+ elif type == "Pony":
318
+ prompts = prompts + pony_ps
319
+ neg_prompts = neg_prompts + pony_nps
320
+
321
+ prompt = ", ".join(list_uniq(prompts) + last_empty_p)
322
+ neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
323
+
324
+ return prompt, neg_prompt
325
+
326
+
327
+ def load_model_prompt_dict():
328
+ import json
329
+ dict = {}
330
+ path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
331
+ try:
332
+ with open('model_dict.json', encoding='utf-8') as f:
333
+ dict = json.load(f)
334
+ except Exception:
335
+ pass
336
+ return dict
337
+
338
+
339
+ model_prompt_dict = load_model_prompt_dict()
340
+
341
+
342
+ def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
343
+ if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
344
+ prompts = to_list(prompt)
345
+ neg_prompts = to_list(neg_prompt)
346
+ prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
347
+ neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
348
+ last_empty_p = [""] if not prompts and type != "None" else []
349
+ last_empty_np = [""] if not neg_prompts and type != "None" else []
350
+ ps = []
351
+ nps = []
352
+ if model_name in model_prompt_dict.keys():
353
+ ps = to_list(model_prompt_dict[model_name]["prompt"])
354
+ nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
355
+ else:
356
+ ps = default_ps
357
+ nps = default_nps
358
+ prompts = prompts + ps
359
+ neg_prompts = neg_prompts + nps
360
+ prompt = ", ".join(list_uniq(prompts) + last_empty_p)
361
+ neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
362
+ return prompt, neg_prompt
363
+
364
+
365
+ tag_group_dict = load_dict_from_csv('tag_group.csv')
366
+
367
+
368
+ def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
369
+ def is_dressed(tag):
370
+ import re
371
+ p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
372
+ return p.search(tag)
373
+
374
+ def is_background(tag):
375
+ import re
376
+ p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
377
+ return p.search(tag)
378
+
379
+ un_tags = ['solo']
380
+ group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
381
+ keep_group_dict = {
382
+ "body": ['groups', 'body_parts'],
383
+ "dress": ['groups', 'body_parts', 'attire'],
384
+ "all": group_list,
385
+ }
386
+
387
+ def is_necessary(tag, keep_tags, group_dict):
388
+ if keep_tags == "all":
389
+ return True
390
+ elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
391
+ return False
392
+ elif keep_tags == "body" and is_dressed(tag):
393
+ return False
394
+ elif is_background(tag):
395
+ return False
396
+ else:
397
+ return True
398
+
399
+ if keep_tags == "all": return input_prompt
400
+ keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
401
+ explicit_group = list(set(group_list) ^ set(keep_group))
402
+
403
+ tags = input_prompt.split(",") if input_prompt else []
404
+ people_tags: list[str] = []
405
+ other_tags: list[str] = []
406
+
407
+ group_dict = tag_group_dict
408
+ for tag in tags:
409
+ tag = replace_underline(tag)
410
+ if tag in PEOPLE_TAGS:
411
+ people_tags.append(tag)
412
+ elif is_necessary(tag, keep_tags, group_dict):
413
+ other_tags.append(tag)
414
+
415
+ output_prompt = ", ".join(people_tags + other_tags)
416
+
417
+ return output_prompt
418
+
419
+
420
+ def sort_taglist(tags: list[str]):
421
+ if not tags: return []
422
+ character_tags: list[str] = []
423
+ series_tags: list[str] = []
424
+ people_tags: list[str] = []
425
+ group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
426
+ group_tags = {}
427
+ other_tags: list[str] = []
428
+ rating_tags: list[str] = []
429
+
430
+ group_dict = tag_group_dict
431
+ group_set = set(group_dict.keys())
432
+ character_set = set(anime_series_dict.keys())
433
+ series_set = set(anime_series_dict.values())
434
+ rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
435
+
436
+ for tag in tags:
437
+ tag = replace_underline(tag)
438
+ if tag in PEOPLE_TAGS:
439
+ people_tags.append(tag)
440
+ elif tag in rating_set:
441
+ rating_tags.append(tag)
442
+ elif tag in group_set:
443
+ elem = group_dict[tag]
444
+ group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
445
+ elif tag in character_set:
446
+ character_tags.append(tag)
447
+ elif tag in series_set:
448
+ series_tags.append(tag)
449
+ else:
450
+ other_tags.append(tag)
451
+
452
+ output_group_tags: list[str] = []
453
+ for k in group_list:
454
+ output_group_tags.extend(group_tags.get(k, []))
455
+
456
+ rating_tags = [rating_tags[0]] if rating_tags else []
457
+ rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
458
+
459
+ output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
460
+
461
+ return output_tags
462
+
463
+
464
+ def sort_tags(tags: str):
465
+ if not tags: return ""
466
+ taglist: list[str] = []
467
+ for tag in tags.split(","):
468
+ taglist.append(tag.strip())
469
+ taglist = list(filter(lambda x: x != "", taglist))
470
+ return ", ".join(sort_taglist(taglist))
471
+
472
+
473
+ def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
474
+ results = {
475
+ k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
476
+ }
477
+
478
+ rating = {}
479
+ character = {}
480
+ general = {}
481
+
482
+ for k, v in results.items():
483
+ if k.startswith("rating:"):
484
+ rating[k.replace("rating:", "")] = v
485
+ continue
486
+ elif k.startswith("character:"):
487
+ character[k.replace("character:", "")] = v
488
+ continue
489
+
490
+ general[k] = v
491
+
492
+ character = {k: v for k, v in character.items() if v >= character_threshold}
493
+ general = {k: v for k, v in general.items() if v >= general_threshold}
494
+
495
+ return rating, character, general
496
+
497
+
498
+ def gen_prompt(rating: list[str], character: list[str], general: list[str]):
499
+ people_tags: list[str] = []
500
+ other_tags: list[str] = []
501
+ rating_tag = RATING_MAP[rating[0]]
502
+
503
+ for tag in general:
504
+ if tag in PEOPLE_TAGS:
505
+ people_tags.append(tag)
506
+ else:
507
+ other_tags.append(tag)
508
+
509
+ all_tags = people_tags + other_tags
510
+
511
+ return ", ".join(all_tags)
512
+
513
+
514
+ @spaces.GPU(duration=30)
515
+ def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
516
+ inputs = wd_processor.preprocess(image, return_tensors="pt")
517
+
518
+ outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
519
+ logits = torch.sigmoid(outputs.logits[0]) # take the first logits
520
+
521
+ # get probabilities
522
+ if device != default_device: wd_model.to(device=device)
523
+ results = {
524
+ wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
525
+ }
526
+ if device != default_device: wd_model.to(device=default_device)
527
+ # rating, character, general
528
+ rating, character, general = postprocess_results(
529
+ results, general_threshold, character_threshold
530
+ )
531
+ prompt = gen_prompt(
532
+ list(rating.keys()), list(character.keys()), list(general.keys())
533
+ )
534
+ output_series_tag = ""
535
+ output_series_list = character_list_to_series_list(character.keys())
536
+ if output_series_list:
537
+ output_series_tag = output_series_list[0]
538
+ else:
539
+ output_series_tag = ""
540
+ return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
541
+
542
+
543
+ def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
544
+ character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
545
+ if not "Use WD Tagger" in algo and len(algo) != 0:
546
+ return input_series, input_character, input_tags, gr.update(interactive=True)
547
+ return predict_tags(image, general_threshold, character_threshold)
548
+
549
+
550
+ def compose_prompt_to_copy(character: str, series: str, general: str):
551
+ characters = character.split(",") if character else []
552
+ serieses = series.split(",") if series else []
553
+ generals = general.split(",") if general else []
554
+ tags = characters + serieses + generals
555
+ cprompt = ",".join(tags) if tags else ""
556
+ return cprompt
tagger/utils.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from dartrs.v2 import AspectRatioTag, LengthTag, RatingTag, IdentityTag
3
+
4
+
5
+ V2_ASPECT_RATIO_OPTIONS: list[AspectRatioTag] = [
6
+ "ultra_wide",
7
+ "wide",
8
+ "square",
9
+ "tall",
10
+ "ultra_tall",
11
+ ]
12
+ V2_RATING_OPTIONS: list[RatingTag] = [
13
+ "sfw",
14
+ "general",
15
+ "sensitive",
16
+ "nsfw",
17
+ "questionable",
18
+ "explicit",
19
+ ]
20
+ V2_LENGTH_OPTIONS: list[LengthTag] = [
21
+ "very_short",
22
+ "short",
23
+ "medium",
24
+ "long",
25
+ "very_long",
26
+ ]
27
+ V2_IDENTITY_OPTIONS: list[IdentityTag] = [
28
+ "none",
29
+ "lax",
30
+ "strict",
31
+ ]
32
+
33
+
34
+ # ref: https://qiita.com/tregu148/items/fccccbbc47d966dd2fc2
35
+ def gradio_copy_text(_text: None):
36
+ gr.Info("Copied!")
37
+
38
+
39
+ COPY_ACTION_JS = """\
40
+ (inputs, _outputs) => {
41
+ // inputs is the string value of the input_text
42
+ if (inputs.trim() !== "") {
43
+ navigator.clipboard.writeText(inputs);
44
+ }
45
+ }"""
46
+
47
+
48
+ def gradio_copy_prompt(prompt: str):
49
+ gr.Info("Copied!")
50
+ return prompt
tagger/v2.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import torch
3
+ from typing import Callable
4
+ from pathlib import Path
5
+
6
+ from dartrs.v2 import (
7
+ V2Model,
8
+ MixtralModel,
9
+ MistralModel,
10
+ compose_prompt,
11
+ LengthTag,
12
+ AspectRatioTag,
13
+ RatingTag,
14
+ IdentityTag,
15
+ )
16
+ from dartrs.dartrs import DartTokenizer
17
+ from dartrs.utils import get_generation_config
18
+
19
+
20
+ import gradio as gr
21
+ from gradio.components import Component
22
+
23
+
24
+ try:
25
+ from output import UpsamplingOutput
26
+ except:
27
+ from .output import UpsamplingOutput
28
+
29
+
30
+ V2_ALL_MODELS = {
31
+ "dart-v2-moe-sft": {
32
+ "repo": "p1atdev/dart-v2-moe-sft",
33
+ "type": "sft",
34
+ "class": MixtralModel,
35
+ },
36
+ "dart-v2-sft": {
37
+ "repo": "p1atdev/dart-v2-sft",
38
+ "type": "sft",
39
+ "class": MistralModel,
40
+ },
41
+ }
42
+
43
+
44
+ def prepare_models(model_config: dict):
45
+ model_name = model_config["repo"]
46
+ tokenizer = DartTokenizer.from_pretrained(model_name)
47
+ model = model_config["class"].from_pretrained(model_name)
48
+
49
+ return {
50
+ "tokenizer": tokenizer,
51
+ "model": model,
52
+ }
53
+
54
+
55
+ def normalize_tags(tokenizer: DartTokenizer, tags: str):
56
+ """Just remove unk tokens."""
57
+ return ", ".join([tag for tag in tokenizer.tokenize(tags) if tag != "<|unk|>"])
58
+
59
+
60
+ @torch.no_grad()
61
+ def generate_tags(
62
+ model: V2Model,
63
+ tokenizer: DartTokenizer,
64
+ prompt: str,
65
+ ban_token_ids: list[int],
66
+ ):
67
+ output = model.generate(
68
+ get_generation_config(
69
+ prompt,
70
+ tokenizer=tokenizer,
71
+ temperature=1,
72
+ top_p=0.9,
73
+ top_k=100,
74
+ max_new_tokens=256,
75
+ ban_token_ids=ban_token_ids,
76
+ ),
77
+ )
78
+
79
+ return output
80
+
81
+
82
+ def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
83
+ return (
84
+ [f"1{noun}"]
85
+ + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
86
+ + [f"{maximum+1}+{noun}s"]
87
+ )
88
+
89
+
90
+ PEOPLE_TAGS = (
91
+ _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
92
+ )
93
+
94
+
95
+ def gen_prompt_text(output: UpsamplingOutput):
96
+ # separate people tags (e.g. 1girl)
97
+ people_tags = []
98
+ other_general_tags = []
99
+
100
+ for tag in output.general_tags.split(","):
101
+ tag = tag.strip()
102
+ if tag in PEOPLE_TAGS:
103
+ people_tags.append(tag)
104
+ else:
105
+ other_general_tags.append(tag)
106
+
107
+ return ", ".join(
108
+ [
109
+ part.strip()
110
+ for part in [
111
+ *people_tags,
112
+ output.character_tags,
113
+ output.copyright_tags,
114
+ *other_general_tags,
115
+ output.upsampled_tags,
116
+ output.rating_tag,
117
+ ]
118
+ if part.strip() != ""
119
+ ]
120
+ )
121
+
122
+
123
+ def elapsed_time_format(elapsed_time: float) -> str:
124
+ return f"Elapsed: {elapsed_time:.2f} seconds"
125
+
126
+
127
+ def parse_upsampling_output(
128
+ upsampler: Callable[..., UpsamplingOutput],
129
+ ):
130
+ def _parse_upsampling_output(*args) -> tuple[str, str, dict]:
131
+ output = upsampler(*args)
132
+
133
+ return (
134
+ gen_prompt_text(output),
135
+ elapsed_time_format(output.elapsed_time),
136
+ gr.update(interactive=True),
137
+ gr.update(interactive=True),
138
+ )
139
+
140
+ return _parse_upsampling_output
141
+
142
+
143
+ class V2UI:
144
+ model_name: str | None = None
145
+ model: V2Model
146
+ tokenizer: DartTokenizer
147
+
148
+ input_components: list[Component] = []
149
+ generate_btn: gr.Button
150
+
151
+ def on_generate(
152
+ self,
153
+ model_name: str,
154
+ copyright_tags: str,
155
+ character_tags: str,
156
+ general_tags: str,
157
+ rating_tag: RatingTag,
158
+ aspect_ratio_tag: AspectRatioTag,
159
+ length_tag: LengthTag,
160
+ identity_tag: IdentityTag,
161
+ ban_tags: str,
162
+ *args,
163
+ ) -> UpsamplingOutput:
164
+ if self.model_name is None or self.model_name != model_name:
165
+ models = prepare_models(V2_ALL_MODELS[model_name])
166
+ self.model = models["model"]
167
+ self.tokenizer = models["tokenizer"]
168
+ self.model_name = model_name
169
+
170
+ # normalize tags
171
+ # copyright_tags = normalize_tags(self.tokenizer, copyright_tags)
172
+ # character_tags = normalize_tags(self.tokenizer, character_tags)
173
+ # general_tags = normalize_tags(self.tokenizer, general_tags)
174
+
175
+ ban_token_ids = self.tokenizer.encode(ban_tags.strip())
176
+
177
+ prompt = compose_prompt(
178
+ prompt=general_tags,
179
+ copyright=copyright_tags,
180
+ character=character_tags,
181
+ rating=rating_tag,
182
+ aspect_ratio=aspect_ratio_tag,
183
+ length=length_tag,
184
+ identity=identity_tag,
185
+ )
186
+
187
+ start = time.time()
188
+ upsampled_tags = generate_tags(
189
+ self.model,
190
+ self.tokenizer,
191
+ prompt,
192
+ ban_token_ids,
193
+ )
194
+ elapsed_time = time.time() - start
195
+
196
+ return UpsamplingOutput(
197
+ upsampled_tags=upsampled_tags,
198
+ copyright_tags=copyright_tags,
199
+ character_tags=character_tags,
200
+ general_tags=general_tags,
201
+ rating_tag=rating_tag,
202
+ aspect_ratio_tag=aspect_ratio_tag,
203
+ length_tag=length_tag,
204
+ identity_tag=identity_tag,
205
+ elapsed_time=elapsed_time,
206
+ )
207
+
208
+
209
+ def parse_upsampling_output_simple(upsampler: UpsamplingOutput):
210
+ return gen_prompt_text(upsampler)
211
+
212
+
213
+ v2 = V2UI()
214
+
215
+
216
+ def v2_upsampling_prompt(model: str = "dart-v2-moe-sft", copyright: str = "", character: str = "",
217
+ general_tags: str = "", rating: str = "nsfw", aspect_ratio: str = "square",
218
+ length: str = "very_long", identity: str = "lax", ban_tags: str = "censored"):
219
+ raw_prompt = parse_upsampling_output_simple(v2.on_generate(model, copyright, character, general_tags,
220
+ rating, aspect_ratio, length, identity, ban_tags))
221
+ return raw_prompt
222
+
223
+
224
+ def load_dict_from_csv(filename):
225
+ dict = {}
226
+ if not Path(filename).exists():
227
+ if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
228
+ else: return dict
229
+ try:
230
+ with open(filename, 'r', encoding="utf-8") as f:
231
+ lines = f.readlines()
232
+ except Exception:
233
+ print(f"Failed to open dictionary file: {filename}")
234
+ return dict
235
+ for line in lines:
236
+ parts = line.strip().split(',')
237
+ dict[parts[0]] = parts[1]
238
+ return dict
239
+
240
+
241
+ anime_series_dict = load_dict_from_csv('character_series_dict.csv')
242
+
243
+
244
+ def select_random_character(series: str, character: str):
245
+ from random import seed, randrange
246
+ seed()
247
+ character_list = list(anime_series_dict.keys())
248
+ character = character_list[randrange(len(character_list) - 1)]
249
+ series = anime_series_dict.get(character.split(",")[0].strip(), "")
250
+ return series, character
251
+
252
+
253
+ def v2_random_prompt(general_tags: str = "", copyright: str = "", character: str = "", rating: str = "nsfw",
254
+ aspect_ratio: str = "square", length: str = "very_long", identity: str = "lax",
255
+ ban_tags: str = "censored", model: str = "dart-v2-moe-sft"):
256
+ if copyright == "" and character == "":
257
+ copyright, character = select_random_character("", "")
258
+ raw_prompt = v2_upsampling_prompt(model, copyright, character, general_tags, rating,
259
+ aspect_ratio, length, identity, ban_tags)
260
+ return raw_prompt, copyright, character