Spaces:
Running
Running
File size: 16,974 Bytes
4b2575f fe3a75d 4b2575f 02018da 4b2575f 56746e0 4b2575f cfd53e3 4b2575f de246dc 4b2575f 56746e0 4b2575f fe3a75d 4b2575f 56746e0 4b2575f 02018da 3b8935b 4b2575f 3b8935b 4b2575f 3b8935b 02018da 3b8935b 4b2575f 0fcc824 fe3a75d 02018da fe3a75d 02018da fe3a75d 4b2575f ac5827a 4b2575f fe3a75d 4b2575f fe3a75d 4b2575f ac5827a 4b2575f fe3a75d 4b2575f fe3a75d 4b2575f ac5827a 4b2575f 02018da 29db206 02018da 3b8935b 4b2575f cfd53e3 375b410 cfd53e3 375b410 cfd53e3 fe3a75d 4b2575f 02018da 4b2575f 3b8935b 02018da 3b8935b 02018da 3b8935b 02018da 4b2575f 3b8935b 4b2575f 3b8935b 02018da 3b8935b 4b2575f 3b8935b 4b2575f 3b8935b 56746e0 02018da 3b8935b 375b410 02018da 3b8935b 02018da 3b8935b 375b410 3b8935b 02018da 375b410 3b8935b 375b410 3b8935b 02018da 3b8935b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import gradio as gr
import asyncio
from threading import RLock
from pathlib import Path
from huggingface_hub import InferenceClient
server_timeout = 600
inference_timeout = 300
lock = RLock()
loaded_models = {}
model_info_dict = {}
def to_list(s):
return [x.strip() for x in s.split(",")]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
from huggingface_hub import HfApi
api = HfApi()
default_tags = ["diffusers"]
if not sort: sort = "last_modified"
models = []
try:
model_infos = api.list_models(author=author, pipeline_tag="text-to-image",
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
except Exception as e:
print(f"Error: Failed to list models.")
print(e)
return models
for model in model_infos:
if not model.private and not model.gated:
if not_tag and not_tag in model.tags: continue
models.append(model.id)
if len(models) == limit: break
return models
def get_t2i_model_info_dict(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
info = {"md": "None"}
try:
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return info
if model.private or model.gated: return info
try:
tags = model.tags
except Exception as e:
print(e)
return info
if not 'diffusers' in model.tags: return info
if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
else: info["ver"] = "Other"
info["url"] = f"https://huggingface.co/{repo_id}/"
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
info["downloads"] = model.downloads
info["likes"] = model.likes
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'β€: {info["likes"]}'] + [info["last_modified"]]
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
return info
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None):
from PIL import Image
from datetime import datetime, timezone, timedelta
if image_path is None: return None
dt_now = datetime.now(timezone(timedelta(hours=9)))
filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
try:
if Path(image_path).exists():
png_path = "image.png"
Image.open(image_path).convert('RGBA').save(png_path, "PNG")
if save_path is not None:
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
else:
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
return new_path
else:
return None
except Exception as e:
print(e)
return None
def save_gallery(image_path: str | None, images: list[tuple] | None):
if images is None: images = []
files = [i[0] for i in images]
if image_path is None: return images, files
files.insert(0, str(image_path))
images.insert(0, (str(image_path), Path(image_path).stem))
return images, files
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
def load_from_model(model_name: str, hf_token: str = None):
import httpx
import huggingface_hub
from gradio.exceptions import ModelNotFoundError
model_url = f"https://huggingface.co/{model_name}"
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
print(f"Fetching model from: {model_url}")
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token is not None else {}
response = httpx.request("GET", api_url, headers=headers)
if response.status_code != 200:
raise ModelNotFoundError(
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
)
headers["X-Wait-For-Model"] = "true"
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
token=hf_token, timeout=server_timeout)
inputs = gr.components.Textbox(label="Input")
outputs = gr.components.Image(label="Output")
fn = client.text_to_image
def query_huggingface_inference_endpoints(*data, **kwargs):
return fn(*data, **kwargs)
interface_info = {
"fn": query_huggingface_inference_endpoints,
"inputs": inputs,
"outputs": outputs,
"title": model_name,
}
return gr.Interface(**interface_info)
def load_model(model_name: str):
global loaded_models
global model_info_dict
if model_name in loaded_models.keys(): return loaded_models[model_name]
try:
loaded_models[model_name] = load_from_model(model_name)
print(f"Loaded: {model_name}")
except Exception as e:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load: {model_name}")
print(e)
return None
try:
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
print(f"Assigned: {model_name}")
except Exception as e:
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
print(f"Failed to assigned: {model_name}")
print(e)
return loaded_models[model_name]
def load_model_api(model_name: str):
global loaded_models
global model_info_dict
if model_name in loaded_models.keys(): return loaded_models[model_name]
try:
client = InferenceClient(timeout=5)
status = client.get_model_status(model_name)
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
print(f"Failed to load by API: {model_name}")
return None
else:
loaded_models[model_name] = InferenceClient(model_name, timeout=server_timeout)
print(f"Loaded by API: {model_name}")
except Exception as e:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load by API: {model_name}")
print(e)
return None
try:
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
print(f"Assigned by API: {model_name}")
except Exception as e:
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
print(f"Failed to assigned by API: {model_name}")
print(e)
return loaded_models[model_name]
def load_models(models: list):
for model in models:
load_model(model)
positive_prefix = {
"Pony": to_list("score_9, score_8_up, score_7_up"),
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
}
positive_suffix = {
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
}
negative_prefix = {
"Pony": to_list("score_6, score_5, score_4"),
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
}
negative_suffix = {
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
}
positive_all = negative_all = []
for k, v in (positive_prefix | positive_suffix).items():
positive_all = positive_all + v + [s.replace("_", " ") for s in v]
positive_all = list_uniq(positive_all)
for k, v in (negative_prefix | negative_suffix).items():
negative_all = negative_all + v + [s.replace("_", " ") for s in v]
positive_all = list_uniq(positive_all)
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
def flatten(src):
return [item for row in src for item in row]
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, positive_all)
neg_prompts = list_sub(neg_prompts, negative_all)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
return prompt, neg_prompt
recom_prompt_type = {
"None": ([], [], [], []),
"Auto": ([], [], [], []),
"Common": ([], ["Common"], [], ["Common"]),
"Animagine": ([], ["Common", "Anime"], [], ["Common"]),
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
}
enable_auto_recom_prompt = False
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
global enable_auto_recom_prompt
if type == "Auto": enable_auto_recom_prompt = True
else: enable_auto_recom_prompt = False
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
def set_recom_prompt_preset(type: str = "None"):
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
return pos_pre, pos_suf, neg_pre, neg_suf
def get_recom_prompt_type():
type = list(recom_prompt_type.keys())
type.remove("Auto")
return type
def get_positive_prefix():
return list(positive_prefix.keys())
def get_positive_suffix():
return list(positive_suffix.keys())
def get_negative_prefix():
return list(negative_prefix.keys())
def get_negative_suffix():
return list(negative_suffix.keys())
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
tag_type = "danbooru"
words = pos_pre + pos_suf + neg_pre + neg_suf
for word in words:
if "Pony" in word:
tag_type = "e621"
break
return tag_type
def get_model_info_md(model_name: str):
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
def change_model(model_name: str):
load_model_api(model_name)
return get_model_info_md(model_name)
def warm_model(model_name: str):
model = load_model_api(model_name)
if model:
try:
print(f"Warming model: {model_name}")
infer_body(model, " ")
except Exception as e:
print(e)
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
height: int | None = None, width: int | None = None,
steps: int | None = None, cfg: int | None = None):
png_path = "image.png"
kwargs = {}
if height is not None and height >= 256: kwargs["height"] = height
if width is not None and width >= 256: kwargs["width"] = width
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
try:
if isinstance(client, InferenceClient):
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
elif isinstance(client, gr.Interface):
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
else: return None
image.save(png_path)
return str(Path(png_path).resolve())
except Exception as e:
print(e)
return None
async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
height: int | None = None, width: int | None = None,
steps: int | None = None, cfg: int | None = None,
save_path: str | None = None, timeout: float = inference_timeout):
import random
noise = ""
rand = random.randint(1, 500)
for i in range(rand):
noise += " "
model = load_model(model_name)
if not model: return None
task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
height, width, steps, cfg))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except (Exception, asyncio.TimeoutError) as e:
print(e)
print(f"Task timed out: {model_name}")
if not task.done(): task.cancel()
result = None
if task.done() and result is not None:
with lock:
image = rename_image(result, model_name, save_path)
return image
return None
def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
width: int | None = None, steps: int | None = None, cfg: int | None = None,
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
if model_name == 'NA':
return None
try:
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
steps, cfg, save_path, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_name}")
result = None
finally:
loop.close()
return result
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
width: int | None = None, steps: int | None = None, cfg: int | None = None,
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
import random
if model_name_dummy == 'NA':
return None
random.seed()
model_name = random.choice(list(loaded_models.keys()))
try:
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
steps, cfg, save_path, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_name}")
result = None
finally:
loop.close()
return result
|