t2i-multi-demo / multit2i.py
John6666's picture
Super-squash branch 'main' using huggingface_hub
4b2575f verified
raw
history blame
6.35 kB
import gradio as gr
import asyncio
from pathlib import Path
loaded_models = {}
model_info_dict = {}
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
from huggingface_hub import HfApi
api = HfApi()
default_tags = ["diffusers"]
if not sort: sort = "last_modified"
models = []
try:
model_infos = api.list_models(author=author, task="text-to-image", pipeline_tag="text-to-image",
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
except Exception as e:
print(f"Error: Failed to list models.")
print(e)
return models
for model in model_infos:
if not model.private and not model.gated:
if not_tag and not_tag in model.tags: continue
models.append(model.id)
if len(models) == limit: break
return models
def get_t2i_model_info_dict(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
info = {"md": "None"}
try:
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return info
if model.private or model.gated: return info
try:
tags = model.tags
except Exception:
return info
if not 'diffusers' in model.tags: return info
if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
else: info["ver"] = "Other"
info["url"] = f"https://huggingface.co/{repo_id}/"
if model.card_data and model.card_data.tags:
info["tags"] = model.card_data.tags
info["downloads"] = model.downloads
info["likes"] = model.likes
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❀: {info["likes"]}'] + [info["last_modified"]]
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
return info
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
from datetime import datetime, timezone, timedelta
progress(0, desc="Updating gallery...")
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
i = 1
if not images: return images
output_images = []
output_paths = []
for image in images:
filename = f'{image[1]}_{basename}{str(i)}.png'
i += 1
oldpath = Path(image[0])
newpath = oldpath
try:
if oldpath.stem == "image" and oldpath.exists():
newpath = oldpath.resolve().rename(Path(filename).resolve())
except Exception as e:
print(e)
pass
finally:
output_paths.append(str(newpath))
output_images.append((str(newpath), str(filename)))
progress(1, desc="Gallery updated.")
return gr.update(value=output_images), gr.update(value=output_paths)
def load_model(model_name: str):
global loaded_models
global model_info_dict
if model_name in loaded_models.keys(): return model_name
try:
loaded_models[model_name] = gr.load(f'models/{model_name}')
print(f"Loaded: {model_name}")
except Exception as e:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load: {model_name}")
print(e)
return ""
try:
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
except Exception as e:
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
print(e)
return model_name
async def async_load_models(models: list, limit: int=5):
sem = asyncio.Semaphore(limit)
async def async_load_model(model: str):
async with sem:
try:
return load_model(model)
except Exception as e:
print(e)
tasks = [asyncio.create_task(async_load_model(model)) for model in models]
return await asyncio.wait(tasks)
def load_models(models: list, limit: int=5):
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(async_load_models(models, limit))
except Exception as e:
print(e)
pass
loop.close()
def get_model_info_md(model_name: str):
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
def change_model(model_name: str):
load_model(model_name)
return get_model_info_md(model_name)
def infer(prompt: str, model_name: str, recom_prompt: bool, progress=gr.Progress(track_tqdm=True)):
from PIL import Image
import random
seed = ""
rand = random.randint(1, 500)
for i in range(rand):
seed += " "
rprompt = ", highly detailed, masterpiece, best quality, very aesthetic, absurdres, " if recom_prompt else ""
caption = model_name.split("/")[-1]
try:
model = load_model(model_name)
if not model: return (None, None)
image_path = model(prompt + rprompt + seed)
image = Image.open(image_path).convert('RGB')
except Exception as e:
print(e)
return (None, None)
return (image, caption)
def infer_multi(prompt: str, model_name: str, recom_prompt: bool, image_num: float, results: list, progress=gr.Progress(track_tqdm=True)):
image_num = int(image_num)
images = results if results else []
for i in range(image_num):
images.append(infer(prompt, model_name, recom_prompt))
yield images