File size: 7,671 Bytes
5fbe98e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import time
import torch
from typing import Callable
from pathlib import Path

from dartrs.v2 import (
    V2Model,
    MixtralModel,
    MistralModel,
    compose_prompt,
    LengthTag,
    AspectRatioTag,
    RatingTag,
    IdentityTag,
)
from dartrs.dartrs import DartTokenizer
from dartrs.utils import get_generation_config


import gradio as gr
from gradio.components import Component


try:
    from output import UpsamplingOutput
except:
    from .output import UpsamplingOutput


V2_ALL_MODELS = {
    "dart-v2-moe-sft": {
        "repo": "p1atdev/dart-v2-moe-sft",
        "type": "sft",
        "class": MixtralModel,
    },
    "dart-v2-sft": {
        "repo": "p1atdev/dart-v2-sft",
        "type": "sft",
        "class": MistralModel,
    },
}


def prepare_models(model_config: dict):
    model_name = model_config["repo"]
    tokenizer = DartTokenizer.from_pretrained(model_name)
    model = model_config["class"].from_pretrained(model_name)

    return {
        "tokenizer": tokenizer,
        "model": model,
    }


def normalize_tags(tokenizer: DartTokenizer, tags: str):
    """Just remove unk tokens."""
    return ", ".join([tag for tag in tokenizer.tokenize(tags) if tag != "<|unk|>"])


@torch.no_grad()
def generate_tags(

    model: V2Model,

    tokenizer: DartTokenizer,

    prompt: str,

    ban_token_ids: list[int],

):
    output = model.generate(
        get_generation_config(
            prompt,
            tokenizer=tokenizer,
            temperature=1,
            top_p=0.9,
            top_k=100,
            max_new_tokens=256,
            ban_token_ids=ban_token_ids,
        ),
    )

    return output


def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
    return (
        [f"1{noun}"]
        + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
        + [f"{maximum+1}+{noun}s"]
    )


PEOPLE_TAGS = (
    _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)


def gen_prompt_text(output: UpsamplingOutput):
    # separate people tags (e.g. 1girl)
    people_tags = []
    other_general_tags = []
    
    for tag in output.general_tags.split(","):
        tag = tag.strip()
        if tag in PEOPLE_TAGS:
            people_tags.append(tag)
        else:
            other_general_tags.append(tag)

    return ", ".join(
        [
            part.strip()
            for part in [
                *people_tags,
                output.character_tags,
                output.copyright_tags,
                *other_general_tags,
                output.upsampled_tags,
                output.rating_tag,
            ]
            if part.strip() != ""
        ]
    )


def elapsed_time_format(elapsed_time: float) -> str:
    return f"Elapsed: {elapsed_time:.2f} seconds"


def parse_upsampling_output(

    upsampler: Callable[..., UpsamplingOutput],

):
    def _parse_upsampling_output(*args) -> tuple[str, str, dict]:
        output = upsampler(*args)

        return (
            gen_prompt_text(output),
            elapsed_time_format(output.elapsed_time),
            gr.update(interactive=True),
            gr.update(interactive=True),
        )

    return _parse_upsampling_output


class V2UI:
    model_name: str | None = None
    model: V2Model
    tokenizer: DartTokenizer

    input_components: list[Component] = []
    generate_btn: gr.Button

    def on_generate(

        self,

        model_name: str,

        copyright_tags: str,

        character_tags: str,

        general_tags: str,

        rating_tag: RatingTag,

        aspect_ratio_tag: AspectRatioTag,

        length_tag: LengthTag,

        identity_tag: IdentityTag,

        ban_tags: str,

        *args,

    ) -> UpsamplingOutput:
        if self.model_name is None or self.model_name != model_name:
            models = prepare_models(V2_ALL_MODELS[model_name])
            self.model = models["model"]
            self.tokenizer = models["tokenizer"]
            self.model_name = model_name

        # normalize tags
        # copyright_tags = normalize_tags(self.tokenizer, copyright_tags)
        # character_tags = normalize_tags(self.tokenizer, character_tags)
        # general_tags = normalize_tags(self.tokenizer, general_tags)

        ban_token_ids = self.tokenizer.encode(ban_tags.strip())

        prompt = compose_prompt(
            prompt=general_tags,
            copyright=copyright_tags,
            character=character_tags,
            rating=rating_tag,
            aspect_ratio=aspect_ratio_tag,
            length=length_tag,
            identity=identity_tag,
        )

        start = time.time()
        upsampled_tags = generate_tags(
            self.model,
            self.tokenizer,
            prompt,
            ban_token_ids,
        )
        elapsed_time = time.time() - start

        return UpsamplingOutput(
            upsampled_tags=upsampled_tags,
            copyright_tags=copyright_tags,
            character_tags=character_tags,
            general_tags=general_tags,
            rating_tag=rating_tag,
            aspect_ratio_tag=aspect_ratio_tag,
            length_tag=length_tag,
            identity_tag=identity_tag,
            elapsed_time=elapsed_time,
        )


def parse_upsampling_output_simple(upsampler: UpsamplingOutput):
    return gen_prompt_text(upsampler)


v2 = V2UI()


def v2_upsampling_prompt(model: str = "dart-v2-moe-sft", copyright: str = "", character: str = "",

                          general_tags: str = "", rating: str = "nsfw", aspect_ratio: str = "square",

                            length: str = "very_long", identity: str = "lax", ban_tags: str = "censored"):
    raw_prompt = parse_upsampling_output_simple(v2.on_generate(model, copyright, character, general_tags,
                                                                rating, aspect_ratio, length, identity, ban_tags))
    return raw_prompt


def load_dict_from_csv(filename):
    dict = {}
    if not Path(filename).exists():
        if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
        else: return dict
    try:
        with open(filename, 'r', encoding="utf-8") as f:
            lines = f.readlines()
    except Exception:
        print(f"Failed to open dictionary file: {filename}")
        return dict
    for line in lines:
        parts = line.strip().split(',')
        dict[parts[0]] = parts[1]
    return dict


anime_series_dict = load_dict_from_csv('character_series_dict.csv')


def select_random_character(series: str, character: str):
    from random import seed, randrange
    seed()
    character_list = list(anime_series_dict.keys())
    character = character_list[randrange(len(character_list) - 1)]
    series = anime_series_dict.get(character.split(",")[0].strip(), "")
    return series, character


def v2_random_prompt(general_tags: str = "", copyright: str = "", character: str = "", rating: str = "nsfw",

                      aspect_ratio: str = "square", length: str = "very_long", identity: str = "lax",

                      ban_tags: str = "censored", model: str = "dart-v2-moe-sft"):
    if copyright == "" and character == "":
        copyright, character = select_random_character("", "")
    raw_prompt = v2_upsampling_prompt(model, copyright, character, general_tags, rating,
                                       aspect_ratio, length, identity, ban_tags)
    return raw_prompt, copyright, character