from transformers import pipeline import gradio as gr clip_models = [ "zer0int/CLIP-GmP-ViT-L-14", "openai/clip-vit-large-patch14", "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", ] clip_checkpoint = clip_models[0] clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification") def postprocess(output): return {out["label"]: float(out["score"]) for out in output} def infer(image, candidate_labels): candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] clip_out = clip_detector(image, candidate_labels=candidate_labels) return postprocess(clip_out) def load_clip_model(modelname): global clip_detector try: clip_detector = pipeline(model=modelname, task="zero-shot-image-classification") except Exception as e: raise gr.Error(f"Model load error: {modelname} {e}") return modelname with gr.Blocks() as demo: gr.Markdown("# Test CLIP") with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil") text_input = gr.Textbox(label="Input a list of labels") model_input = gr.Dropdown(label="CLIP model", choices=clip_models, value=clip_models[0], allow_custom_value=True, interactive=True) run_button = gr.Button("Run", visible=True) with gr.Column(): clip_output = gr.Label(label = "CLIP Output", num_top_classes=3) examples = [["./baklava.jpg", "baklava, souffle, tiramisu"], ["./cheetah.jpg", "cat, dog"], ["./cat.png", "cat, dog"]] gr.Examples( examples = examples, inputs=[image_input, text_input], outputs=[clip_output], fn=infer, cache_examples=True ) run_button.click(fn=infer, inputs=[image_input, text_input], outputs=[clip_output]) model_input.change(load_clip_model, [model_input], [model_input]) demo.launch()