John6666 commited on
Commit
db97375
β€’
1 Parent(s): b6f23d9

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +367 -110
app.py CHANGED
@@ -1,116 +1,373 @@
1
  import spaces
2
  import gradio as gr
3
- from utils import (
4
- gradio_copy_text,
5
- COPY_ACTION_JS,
6
- )
7
- from tagger import (
8
- convert_danbooru_to_e621_prompt,
9
- insert_recom_prompt,
10
- )
11
- from genimage import (
12
- generate_image,
13
- )
14
- from llmdolphin import (
15
- get_llm_formats,
16
- get_dolphin_model_format,
17
- get_dolphin_models,
18
- get_dolphin_model_info,
19
- select_dolphin_model,
20
- select_dolphin_format,
21
- add_dolphin_models,
22
- get_dolphin_sysprompt,
23
- get_dolphin_sysprompt_mode,
24
- select_dolphin_sysprompt,
25
- get_dolphin_languages,
26
- select_dolphin_language,
27
- dolphin_respond,
28
- dolphin_parse,
29
- )
30
-
31
-
32
- with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css="", delete_cache=(60, 3600)) as app:
33
- gr.Markdown("""# Natural Text to SD Prompt Translator With LLM alpha
34
- Text in natural language (English, Japanese, ...) => Prompt
35
- """)
36
- with gr.Column():
37
- with gr.Group():
38
- chatbot = gr.Chatbot(likeable=False, show_copy_button=True, show_share_button=False, layout="bubble", container=True)
 
 
 
 
 
 
 
 
 
 
 
39
  with gr.Row():
40
- chat_msg = gr.Textbox(show_label=False, placeholder="Input text in English, Japanese, or any other languages and press Enter or click Send.", scale=4)
41
- chat_submit = gr.Button("Send", scale=1)
42
- chat_clear = gr.Button("Clear", scale=1)
43
- with gr.Accordion("Additional inputs", open=False):
44
- chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
45
- chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
46
- chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
47
- chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
48
- chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
49
- chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
50
- chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
51
- with gr.Accordion("Add models", open=False):
52
- chat_add_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/mradermacher/MagnumChronos-i1-GGUF/blob/main/MagnumChronos.i1-Q4_K_M.gguf", lines=1)
53
- chat_add_format = gr.Dropdown(choices=get_llm_formats(), value=get_llm_formats()[0], label="Message format")
54
- chat_add_submit = gr.Button("Update lists of models")
55
- with gr.Accordion("Modes", open=True):
56
- chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
57
- chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  with gr.Row():
59
- chat_mode = gr.Dropdown(choices=get_dolphin_sysprompt_mode(), value=get_dolphin_sysprompt_mode()[0], allow_custom_value=False, label="Mode")
60
- chat_lang = gr.Dropdown(choices=get_dolphin_languages(), value="English", allow_custom_value=True, label="Output language")
61
- with gr.Row():
62
- with gr.Group():
63
- output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
64
- copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
65
- with gr.Group():
66
- output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
67
- copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
68
- with gr.Accordion(label="Advanced options", open=False, visible=False):
69
- tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
70
- dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
71
- dummy_np_pony = gr.Textbox(label="Negative prompt", value="", visible=False)
72
- recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
73
- recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
74
- generate_image_btn = gr.Button(value="GENERATE IMAGE", size="lg", variant="primary")
75
- result_image = gr.Gallery(label="Generated images", columns=1, object_fit="contain", container=True, preview=True, show_label=False, show_share_button=False, show_download_button=True, interactive=False, visible=True, format="png")
76
-
77
- gr.on(
78
- triggers=[chat_msg.submit, chat_submit.click],
79
- fn=dolphin_respond,
80
- inputs=[chat_msg, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp],
81
- outputs=[chatbot],
82
- queue=True,
83
- show_progress="full",
84
- trigger_mode="once",
85
- ).success(dolphin_parse, [chatbot], [output_text, copy_btn, copy_btn_pony]).success(
86
- convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False,
87
  ).success(
88
- insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False,
89
  ).success(
90
- insert_recom_prompt, [output_text_pony, dummy_np_pony, recom_pony], [output_text_pony, dummy_np_pony], queue=False,
91
- )
92
- chat_clear.click(lambda: None, None, chatbot, queue=False)
93
- chat_model.change(select_dolphin_model, [chat_model], [chat_model, chat_format, chat_model_info], queue=True, show_progress="full")\
94
- .success(lambda: None, None, chatbot, queue=False)
95
- chat_format.change(select_dolphin_format, [chat_format], [chat_format], queue=False)\
96
- .success(lambda: None, None, chatbot, queue=False)
97
- chat_mode.change(select_dolphin_sysprompt, [chat_mode], [chat_sysmsg], queue=False)
98
- chat_lang.change(select_dolphin_language, [chat_lang], [chat_sysmsg], queue=False)
99
- gr.on(
100
- triggers=[chat_add_text.submit, chat_add_submit.click],
101
- fn=add_dolphin_models,
102
- inputs=[chat_add_text, chat_add_format],
103
- outputs=[chat_model],
104
- queue=False,
105
- trigger_mode="once",
106
- )
107
-
108
- copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS)
109
- copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS)
110
-
111
- generate_image_btn.click(generate_image, [output_text, dummy_np], [result_image], show_progress="full")
112
-
113
-
114
- if __name__ == "__main__":
115
- app.queue()
116
- app.launch()
 
 
1
  import spaces
2
  import gradio as gr
3
+ import numpy as np
4
+
5
+ # DiffuseCraft
6
+ from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
7
+ get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail,
8
+ get_t2i_model_info, get_all_lora_tupled_list, update_loras,
9
+ apply_lora_prompt, download_my_lora, search_civitai_lora,
10
+ select_civitai_lora, search_civitai_lora_json,
11
+ preset_quality, preset_styles, process_style_prompt)
12
+ # Translator
13
+ from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
14
+ get_llm_formats, get_dolphin_model_format, get_dolphin_models,
15
+ get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
16
+ # Tagger
17
+ from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
18
+ from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
19
+ V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
20
+ from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
21
+ remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
22
+ translate_prompt, select_random_character)
23
+ from tagger.fl2sd3longcap import predict_tags_fl2_sd3
24
+ def description_ui():
25
+ gr.Markdown(
26
+ """
27
+ ## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
28
+ (Image =>) Prompt => Upsampled longer prompt
29
+ - Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with πŸ€— transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
30
+ - Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
31
+ , gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
32
+ """
33
+ )
34
+
35
+
36
+ MAX_SEED = np.iinfo(np.int32).max
37
+ MAX_IMAGE_SIZE = 1216
38
+
39
+ css = """
40
+ #container { margin: 0 auto; !important; }
41
+ #col-container { margin: 0 auto; !important; }
42
+ #result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
43
+ .lora { min-width: 480px; !important; }
44
+ #model-info { text-align: center; !important; }
45
+ """
46
+
47
+ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
48
+ with gr.Tab("Image Generator"):
49
+ with gr.Column(elem_id="col-container"):
50
  with gr.Row():
51
+ prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
52
+
53
+ with gr.Row():
54
+ run_button = gr.Button("Run")
55
+ run_translate_button = gr.Button("Translate")
56
+
57
+ result = gr.Image(label="Result", elem_id="result", format="png", show_label=False, interactive=False,
58
+ show_download_button=True, show_share_button=False, container=True)
59
+
60
+ with gr.Accordion("Advanced Settings", open=False):
61
+ with gr.Row():
62
+ negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt",
63
+ value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
64
+
65
+ with gr.Row():
66
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
67
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
68
+
69
+ with gr.Row():
70
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
71
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
72
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
73
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
74
+
75
+ with gr.Row():
76
+ with gr.Column(scale=4):
77
+ model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
78
+ choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
79
+ allow_custom_value=True, interactive=True, min_width=320)
80
+ model_info = gr.Markdown(elem_id="model-info")
81
+ with gr.Column(scale=1):
82
+ model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
83
+
84
+ with gr.Row():
85
+ sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler a")
86
+ vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
87
+
88
+ with gr.Accordion("LoRA", open=True, visible=True):
89
+ with gr.Row():
90
+ with gr.Column():
91
+ with gr.Row():
92
+ lora1 = gr.Dropdown(label="LoRA 1", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
93
+ lora1_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 1: weight")
94
+ with gr.Row():
95
+ lora1_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
96
+ lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
97
+ lora1_md = gr.Markdown(value="", visible=False)
98
+ with gr.Column():
99
+ with gr.Row():
100
+ lora2 = gr.Dropdown(label="LoRA 2", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
101
+ lora2_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 2: weight")
102
+ with gr.Row():
103
+ lora2_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
104
+ lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
105
+ lora2_md = gr.Markdown(value="", visible=False)
106
+ with gr.Column():
107
+ with gr.Row():
108
+ lora3 = gr.Dropdown(label="LoRA 3", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
109
+ lora3_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 3: weight")
110
+ with gr.Row():
111
+ lora3_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
112
+ lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
113
+ lora3_md = gr.Markdown(value="", visible=False)
114
+ with gr.Column():
115
+ with gr.Row():
116
+ lora4 = gr.Dropdown(label="LoRA 4", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
117
+ lora4_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 4: weight")
118
+ with gr.Row():
119
+ lora4_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
120
+ lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
121
+ lora4_md = gr.Markdown(value="", visible=False)
122
+ with gr.Column():
123
+ with gr.Row():
124
+ lora5 = gr.Dropdown(label="LoRA 5", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
125
+ lora5_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 5: weight")
126
+ with gr.Row():
127
+ lora5_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
128
+ lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
129
+ lora5_md = gr.Markdown(value="", visible=False)
130
+ with gr.Accordion("From URL", open=True, visible=True):
131
+ with gr.Row():
132
+ lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
133
+ lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Pony", "SD 1.5", "SDXL 1.0"], value=["Pony", "SDXL 1.0"])
134
+ lora_search_civitai_submit = gr.Button("Search on Civitai")
135
+ with gr.Row():
136
+ lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
137
+ lora_search_civitai_json = gr.JSON(value={}, visible=False)
138
+ lora_search_civitai_desc = gr.Markdown(value="", visible=False)
139
+ lora_download_url = gr.Textbox(label="URL", placeholder="http://...my_lora_url.safetensors", lines=1)
140
+ lora_download = gr.Button("Get and set LoRA and apply to prompt")
141
+
142
+ with gr.Row():
143
+ quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
144
+ style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
145
+ recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
146
+
147
+ with gr.Accordion("Translation Settings", open=False):
148
+ chatbot = gr.Chatbot(likeable=False, render_markdown=False, visible=False) # component for auto-translation
149
+ chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
150
+ chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
151
+ chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
152
+ with gr.Row():
153
+ chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
154
+ chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
155
+ chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
156
+ chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
157
+ chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
158
+ chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
159
+
160
+ examples = gr.Examples(
161
+ examples = [
162
+ ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
163
+ ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
164
+ ["kafuu chino, 1girl, solo"],
165
+ ["1girl"],
166
+ ["beautiful sunset"],
167
+ ],
168
+ inputs=[prompt],
169
+ )
170
+
171
+ gr.on( #lambda x: None, inputs=None, outputs=result).then(
172
+ triggers=[run_button.click, prompt.submit],
173
+ fn=infer,
174
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
175
+ guidance_scale, num_inference_steps, model_name,
176
+ lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
177
+ sampler, vae_model],
178
+ outputs=[result],
179
+ queue=True,
180
+ show_progress="full",
181
+ show_api=True,
182
+ )
183
+
184
+ gr.on( #lambda x: None, inputs=None, outputs=result).then(
185
+ triggers=[run_translate_button.click],
186
+ fn=_infer, # dummy fn for api
187
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
188
+ guidance_scale, num_inference_steps, model_name,
189
+ lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
190
+ sampler, vae_model],
191
+ outputs=[result],
192
+ queue=False,
193
+ show_api=True,
194
+ api_name="infer_translate",
195
+ ).success(
196
+ fn=dolphin_respond_auto,
197
+ inputs=[prompt, chatbot],
198
+ outputs=[chatbot],
199
+ queue=True,
200
+ show_progress="full",
201
+ show_api=False,
202
+ ).success(
203
+ fn=dolphin_parse_simple,
204
+ inputs=[prompt, chatbot],
205
+ outputs=[prompt],
206
+ queue=False,
207
+ show_api=False,
208
+ ).success(
209
+ fn=infer,
210
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
211
+ guidance_scale, num_inference_steps, model_name,
212
+ lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
213
+ sampler, vae_model],
214
+ outputs=[result],
215
+ queue=True,
216
+ show_progress="full",
217
+ show_api=False,
218
+ ).success(lambda: None, None, chatbot, queue=False, show_api=False)\
219
+ .success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api
220
+
221
+ gr.on(
222
+ triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
223
+ lora4.change, lora4_wt.change, lora5.change, lora5_wt.change],
224
+ fn=update_loras,
225
+ inputs=[prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt],
226
+ outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
227
+ lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md,
228
+ lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md],
229
+ queue=False,
230
+ trigger_mode="once",
231
+ show_api=False,
232
+ )
233
+ lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
234
+ lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
235
+ lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
236
+ lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
237
+ lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
238
+
239
+ gr.on(
240
+ triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
241
+ fn=search_civitai_lora,
242
+ inputs=[lora_search_civitai_query, lora_search_civitai_basemodel],
243
+ outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
244
+ scroll_to_output=True,
245
+ queue=True,
246
+ show_api=False,
247
+ )
248
+ lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
249
+ lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
250
+ gr.on(
251
+ triggers=[lora_download.click, lora_download_url.submit],
252
+ fn=download_my_lora,
253
+ inputs=[lora_download_url,lora1, lora2, lora3, lora4, lora5],
254
+ outputs=[lora1, lora2, lora3, lora4, lora5],
255
+ scroll_to_output=True,
256
+ queue=True,
257
+ show_api=False,
258
+ )
259
+
260
+ recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
261
+ gr.on(
262
+ triggers=[quality_selector.change, style_selector.change],
263
+ fn=process_style_prompt,
264
+ inputs=[prompt, negative_prompt, style_selector, quality_selector],
265
+ outputs=[prompt, negative_prompt],
266
+ queue=False,
267
+ trigger_mode="once",
268
+ )
269
+
270
+ model_detail.change(enable_diffusers_model_detail, [model_detail, model_name], [model_detail, model_name], queue=False, show_api=False)
271
+ model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
272
+
273
+ chat_model.change(select_dolphin_model, [chat_model], [chat_model, chat_format, chat_model_info], queue=True, show_progress="full", show_api=False)\
274
+ .success(lambda: None, None, chatbot, queue=False, show_api=False)
275
+ chat_format.change(select_dolphin_format, [chat_format], [chat_format], queue=False, show_api=False)\
276
+ .success(lambda: None, None, chatbot, queue=False, show_api=False)
277
+
278
+ # Tagger
279
+ with gr.Tab("Tags Transformer with Tagger"):
280
+ with gr.Column():
281
+ with gr.Group():
282
+ input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
283
+ with gr.Accordion(label="Advanced options", open=False):
284
+ general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
285
+ character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
286
+ input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
287
+ recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
288
+ image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
289
+ keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
290
+ generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
291
+ with gr.Group():
292
+ with gr.Row():
293
+ input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
294
+ input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
295
+ random_character = gr.Button(value="Random character 🎲", size="sm")
296
+ input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
297
+ input_tags_to_copy = gr.Textbox(value="", visible=False)
298
+ with gr.Row():
299
+ copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
300
+ copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
301
+ translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
302
+ tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
303
+ input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
304
+ with gr.Accordion(label="Advanced options", open=False):
305
+ input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
306
+ input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
307
+ input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
308
+ input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
309
+ model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
310
+ dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
311
+ recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
312
+ recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
313
+ generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
314
  with gr.Row():
315
+ with gr.Group():
316
+ output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
317
+ with gr.Row():
318
+ copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
319
+ copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
320
+ with gr.Group():
321
+ output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
322
+ with gr.Row():
323
+ copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
324
+ copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
325
+
326
+ random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)
327
+
328
+ translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
329
+ translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
330
+ translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)
331
+
332
+ generate_from_image_btn.click(
333
+ lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
334
+ ).success(
335
+ predict_tags_wd,
336
+ [input_image, input_general, image_algorithms, general_threshold, character_threshold],
337
+ [input_copyright, input_character, input_general, copy_input_btn],
338
+ show_api=False,
339
+ ).success(
340
+ predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
341
+ ).success(
342
+ remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
343
  ).success(
344
+ convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
345
  ).success(
346
+ insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
347
+ ).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
348
+ copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
349
+ .success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
350
+ copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
351
+ .success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
352
+
353
+ generate_btn.click(
354
+ v2_upsampling_prompt,
355
+ [model_name, input_copyright, input_character, input_general,
356
+ input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
357
+ [output_text],
358
+ show_api=False,
359
+ ).success(
360
+ convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
361
+ ).success(
362
+ insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
363
+ ).success(
364
+ insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
365
+ ).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
366
+ None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
367
+ copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
368
+ copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
369
+ copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
370
+ copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)
371
+
372
+ demo.queue()
373
+ demo.launch()