import spaces def load_pipeline(): from diffusers import DiffusionPipeline import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") pipe = DiffusionPipeline.from_pretrained( "John6666/rae-diffusion-xl-v2-sdxl-spo-pcm", custom_pipeline="lpw_stable_diffusion_xl", torch_dtype=torch.float16, ) pipe.to(device) return pipe def save_image(image, metadata, output_dir): import os import uuid import json from PIL import PngImagePlugin filename = str(uuid.uuid4()) + ".png" os.makedirs(output_dir, exist_ok=True) filepath = os.path.join(output_dir, filename) metadata_str = json.dumps(metadata) info = PngImagePlugin.PngInfo() info.add_text("metadata", metadata_str) image.save(filepath, "PNG", pnginfo=info) return filepath pipe = load_pipeline() @spaces.GPU def generate_image(prompt, neg_prompt): metadata = { "prompt": prompt, "negative_prompt": neg_prompt, "resolution": f"{1024} x {1024}", "guidance_scale": 7.5, "num_inference_steps": 16, "sampler": "Euler", } try: images = pipe( prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres", negative_prompt=neg_prompt + ", lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], photo, deformed, disfigured, low contrast, photo, deformed, disfigured, low contrast", width=1024, height=1024, guidance_scale=7.5, num_inference_steps=16, output_type="pil", clip_skip=1, ).images if images: image_paths = [ save_image(image, metadata, "./outputs") for image in images ] return image_paths except Exception as e: return []