Spaces:
Runtime error
Runtime error
import streamlit as st | |
import spacy | |
import wikipediaapi | |
import wikipedia | |
from wikipedia.exceptions import DisambiguationError | |
from transformers import TFAutoModel, AutoTokenizer | |
import numpy as np | |
import pandas as pd | |
import faiss | |
import datetime | |
import time | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except: | |
spacy.cli.download("en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
wh_words = ['what', 'who', 'how', 'when', 'which'] | |
def get_concepts(text): | |
text = text.lower() | |
doc = nlp(text) | |
concepts = [] | |
for chunk in doc.noun_chunks: | |
if chunk.text not in wh_words: | |
concepts.append(chunk.text) | |
return concepts | |
def get_passages(text, k=100): | |
doc = nlp(text) | |
passages = [] | |
passage_len = 0 | |
passage = "" | |
sents = list(doc.sents) | |
for i in range(len(sents)): | |
sen = sents[i] | |
passage_len += len(sen) | |
if passage_len >= k: | |
passages.append(passage) | |
passage = sen.text | |
passage_len = len(sen) | |
continue | |
elif i == (len(sents) - 1): | |
passage += " " + sen.text | |
passages.append(passage) | |
passage = "" | |
passage_len = 0 | |
continue | |
passage += " " + sen.text | |
return passages | |
def get_dicts_for_dpr(concepts, n_results=20, k=100): | |
dicts = [] | |
for concept in concepts: | |
wikis = wikipedia.search(concept, results=n_results) | |
st.write(f"{concept} No of Wikis: {len(wikis)}") | |
for wiki in wikis: | |
try: | |
html_page = wikipedia.page(title=wiki, auto_suggest=False) | |
except DisambiguationError: | |
continue | |
htmlResults = html_page.content | |
passages = get_passages(htmlResults, k=k) | |
for passage in passages: | |
i_dicts = {} | |
i_dicts['text'] = passage | |
i_dicts['title'] = wiki | |
dicts.append(i_dicts) | |
return dicts | |
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
def get_title_text_combined(passage_dicts): | |
res = [] | |
for p in passage_dicts: | |
res.append(tuple((p['title'], p['text']))) | |
return res | |
def extracted_passage_embeddings(processed_passages, max_length=156): | |
passage_inputs = p_tokenizer.batch_encode_plus( | |
processed_passages, | |
add_special_tokens=True, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_token_type_ids=True | |
) | |
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), | |
np.array(passage_inputs['token_type_ids'])], | |
batch_size=64, | |
verbose=1) | |
return passage_embeddings | |
def extracted_query_embeddings(queries, max_length=64): | |
query_inputs = q_tokenizer.batch_encode_plus( | |
queries, | |
add_special_tokens=True, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_token_type_ids=True | |
) | |
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), | |
np.array(query_inputs['attention_mask']), | |
np.array(query_inputs['token_type_ids'])], | |
batch_size=1, | |
verbose=1) | |
return query_embeddings | |
def get_pagetext(page): | |
s = str(page).replace("/t","") | |
return s | |
def get_wiki_summary(search): | |
wiki_wiki = wikipediaapi.Wikipedia('en') | |
page = wiki_wiki.page(search) | |
def get_wiki_summaryDF(search): | |
wiki_wiki = wikipediaapi.Wikipedia('en') | |
page = wiki_wiki.page(search) | |
isExist = page.exists() | |
if not isExist: | |
return isExist, "Not found", "Not found", "Not found", "Not found" | |
pageurl = page.fullurl | |
pagetitle = page.title | |
pagesummary = page.summary[0:60] | |
pagetext = get_pagetext(page.text) | |
backlinks = page.backlinks | |
linklist = "" | |
for link in backlinks.items(): | |
pui = link[0] | |
linklist += pui + " , " | |
a=1 | |
categories = page.categories | |
categorylist = "" | |
for category in categories.items(): | |
pui = category[0] | |
categorylist += pui + " , " | |
a=1 | |
links = page.links | |
linklist2 = "" | |
for link in links.items(): | |
pui = link[0] | |
linklist2 += pui + " , " | |
a=1 | |
sections = page.sections | |
ex_dic = { | |
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"], | |
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ] | |
} | |
df = pd.DataFrame(ex_dic) | |
return df | |
def save_message(name, message): | |
now = datetime.datetime.now() | |
timestamp = now.strftime("%Y-%m-%d %H:%M:%S") | |
with open("chat.txt", "a") as f: | |
f.write(f"{timestamp} - {name}: {message}\n") | |
def press_release(): | |
st.markdown("""ππ Breaking News! π’π£ | |
Introducing StreamlitWikipediaChat - the ultimate way to chat with Wikipedia and the whole world at the same time! πππ | |
Are you tired of reading boring articles on Wikipedia? Do you want to have some fun while learning new things? Then StreamlitWikipediaChat is just the thing for you! ππ» | |
With StreamlitWikipediaChat, you can ask Wikipedia anything you want and get instant responses! Whether you want to know the capital of Madagascar or how to make a delicious chocolate cake, Wikipedia has got you covered. π°π | |
But that's not all! You can also chat with other people from around the world who are using StreamlitWikipediaChat at the same time. It's like a virtual classroom where you can learn from and teach others. ππ¨βπ«π©βπ« | |
And the best part? StreamlitWikipediaChat is super easy to use! All you have to do is type in your question and hit send. That's it! π€―π | |
So, what are you waiting for? Join the fun and start chatting with Wikipedia and the world today! ππ | |
StreamlitWikipediaChat - where learning meets fun! π€π""") | |
def main(): | |
st.title("Streamlit Chat") | |
name = st.text_input("Enter your name") | |
message = st.text_input("Enter a topic to share from Wikipedia") | |
if st.button("Submit"): | |
# wiki | |
df = get_wiki_summaryDF(message) | |
save_message(name, message) | |
save_message(name, df) | |
st.text("Message sent!") | |
st.text("Chat history:") | |
with open("chat.txt", "a+") as f: | |
f.seek(0) | |
chat_history = f.read() | |
#st.text(chat_history) | |
st.markdown(chat_history) | |
countdown = st.empty() | |
t = 60 | |
while t: | |
mins, secs = divmod(t, 60) | |
countdown.text(f"Time remaining: {mins:02d}:{secs:02d}") | |
time.sleep(1) | |
t -= 1 | |
if t == 0: | |
countdown.text("Time's up!") | |
with open("chat.txt", "a+") as f: | |
f.seek(0) | |
chat_history = f.read() | |
#st.text(chat_history) | |
st.markdown(chat_history) | |
press_release() | |
t = 60 | |
if __name__ == "__main__": | |
main() | |