Spaces:
Sleeping
Sleeping
John Guerrerio
commited on
Commit
•
e81cf7c
1
Parent(s):
aefbc5b
first try at deployment
Browse files- Log_Reg.pkl +0 -0
- SVM.pkl +0 -0
- Superstore.csv +0 -0
- XGB.model +0 -0
- app.py +174 -0
- requirements.txt +8 -0
Log_Reg.pkl
ADDED
Binary file (1.14 kB). View file
|
|
SVM.pkl
ADDED
Binary file (1.15 kB). View file
|
|
Superstore.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
XGB.model
ADDED
Binary file (125 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
4 |
+
from sklearn.linear_model import SGDClassifier
|
5 |
+
from sklearn.metrics import classification_report, confusion_matrix, make_scorer, f1_score
|
6 |
+
import shap
|
7 |
+
import xgboost as xgb
|
8 |
+
import gradio as gr
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import joblib
|
11 |
+
|
12 |
+
SVM = joblib.load('SVM.pkl')
|
13 |
+
Log_Reg = joblib.load('Log_Reg.pkl')
|
14 |
+
XGB = xgb.XGBClassifier()
|
15 |
+
XGB.load_model('XGB.model')
|
16 |
+
|
17 |
+
|
18 |
+
df = pd.read_csv('Superstore.csv')
|
19 |
+
df.dropna(subset=["Region", "Category", "Sub-Category", "Quantity", "Discount"], inplace=True)
|
20 |
+
MEDIAN = 8.662 # from the exploratory analysis file
|
21 |
+
RANDOM_STATE = 42 # random seed to ensure results are reproducible
|
22 |
+
|
23 |
+
region=np.unique(df['Region'], return_inverse=True)[1]
|
24 |
+
category=np.unique(df['Category'], return_inverse=True)[1]
|
25 |
+
subCategory=np.unique(df['Sub-Category'], return_inverse=True)[1]
|
26 |
+
|
27 |
+
# turn quantity, discount, and profit columns into vectors of numbers
|
28 |
+
quantity = df["Quantity"].to_numpy()
|
29 |
+
discount = df["Discount"].to_numpy()
|
30 |
+
profit = df["Profit"].to_numpy()
|
31 |
+
|
32 |
+
vectorizedDataset = np.empty((len(region), 5))
|
33 |
+
labels = np.empty(len(region))
|
34 |
+
|
35 |
+
# generate feature vectors
|
36 |
+
for i in range(0, len(region)):
|
37 |
+
data = np.zeros((1, 5))
|
38 |
+
data[0][0] = region[i]
|
39 |
+
data[0][1] = category[i]
|
40 |
+
data[0][2] = subCategory[i]
|
41 |
+
data[0][3] = quantity[i]
|
42 |
+
data[0][4] = discount[i]
|
43 |
+
|
44 |
+
vectorizedDataset[i] = data
|
45 |
+
|
46 |
+
if (profit[i] > MEDIAN):
|
47 |
+
labels[i] = 1
|
48 |
+
else:
|
49 |
+
labels[i] = 0
|
50 |
+
|
51 |
+
train, test, trainLabels, testLabels = train_test_split(vectorizedDataset, labels, test_size=0.3, random_state=RANDOM_STATE)
|
52 |
+
|
53 |
+
region_label = {'Central': 0, 'East': 1, 'South': 2, 'West': 3}
|
54 |
+
category_label = {'Furniture': 0, 'Office Supplies': 1, 'Technology': 2}
|
55 |
+
sub_category_label = {'Accessories': 0, 'Appliances': 1, 'Art': 2, 'Binders': 3, 'Bookcases': 4,
|
56 |
+
'Chairs': 5, 'Copiers': 6, 'Envelopes': 7, 'Fasteners': 8, 'Furnishings': 9,
|
57 |
+
'Labels': 10, 'Machines': 11, 'Paper': 12, 'Phones': 13, 'Storage': 14, 'Supplies': 15,
|
58 |
+
'Tables': 16}
|
59 |
+
profit_label = {0: 'Below Median Profit', 1: 'Above Median Profit'}
|
60 |
+
feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"]
|
61 |
+
|
62 |
+
def sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount):
|
63 |
+
try:
|
64 |
+
Region = region_label[Region]
|
65 |
+
Category = category_label[Category]
|
66 |
+
Sub_Category = sub_category_label[Sub_Category]
|
67 |
+
except KeyError:
|
68 |
+
return ["Please provide region, category, and sub category from the pre-defined Superstore dataset classes", None]
|
69 |
+
|
70 |
+
if Quantity < 1 or Discount < 0:
|
71 |
+
return ["Quantity and Discount must be positive", None]
|
72 |
+
|
73 |
+
if not isinstance(Quantity, int):
|
74 |
+
return ["Quantity must be an integer", None]
|
75 |
+
|
76 |
+
if Discount > 1:
|
77 |
+
return ["Discount cannot be greater than one", None]
|
78 |
+
|
79 |
+
return [Region, Category, Sub_Category]
|
80 |
+
|
81 |
+
def XGB_predict(Region, Category, Sub_Category, Quantity, Discount):
|
82 |
+
sanitized = sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount)
|
83 |
+
|
84 |
+
if len(sanitized)==2:
|
85 |
+
return sanitized
|
86 |
+
|
87 |
+
input = np.array([[sanitized[0], sanitized[1], sanitized[2], Quantity, Discount]])
|
88 |
+
predicted_class = XGB.predict(input)
|
89 |
+
|
90 |
+
explainer = shap.Explainer(XGB, test)
|
91 |
+
shap_values = explainer(input)
|
92 |
+
shap_values.feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"]
|
93 |
+
|
94 |
+
plot = shap.plots.bar(shap_values, show=False)
|
95 |
+
plt.savefig('shap_plot_XGB.png')
|
96 |
+
|
97 |
+
return [profit_label[predicted_class[0]], 'shap_plot_XGB.png']
|
98 |
+
|
99 |
+
def SVM_predict(Region, Category, Sub_Category, Quantity, Discount):
|
100 |
+
sanitized = sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount)
|
101 |
+
|
102 |
+
if len(sanitized)==2:
|
103 |
+
return sanitized
|
104 |
+
|
105 |
+
input = np.array([[sanitized[0], sanitized[1], sanitized[2], Quantity, Discount]])
|
106 |
+
predicted_class = SVM.predict(input)
|
107 |
+
|
108 |
+
explainer = shap.Explainer(SVM, test)
|
109 |
+
shap_values = explainer(input)
|
110 |
+
shap_values.feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"]
|
111 |
+
|
112 |
+
plot = shap.plots.bar(shap_values, show=False)
|
113 |
+
plt.savefig('shap_plot_SVM.png')
|
114 |
+
|
115 |
+
return [profit_label[predicted_class[0]], 'shap_plot_SVM.png']
|
116 |
+
|
117 |
+
def Log_reg_predict(Region, Category, Sub_Category, Quantity, Discount):
|
118 |
+
sanitized = sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount)
|
119 |
+
|
120 |
+
if len(sanitized)==2:
|
121 |
+
return sanitized
|
122 |
+
|
123 |
+
input = np.array([[sanitized[0], sanitized[1], sanitized[2], Quantity, Discount]])
|
124 |
+
predicted_class = Log_Reg.predict(input)
|
125 |
+
|
126 |
+
explainer = shap.Explainer(Log_Reg, test)
|
127 |
+
shap_values = explainer(input)
|
128 |
+
shap_values.feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"]
|
129 |
+
|
130 |
+
plot = shap.plots.bar(shap_values, show=False)
|
131 |
+
plt.savefig('shap_plot_LogReg.png')
|
132 |
+
|
133 |
+
return [profit_label[predicted_class[0]], 'shap_plot_LogReg.png']
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
LogReg_tab = gr.Interface(
|
138 |
+
fn=Log_reg_predict,
|
139 |
+
inputs=["text", "text", "text", "number", "number"],
|
140 |
+
outputs=[
|
141 |
+
gr.Label(label="Model Prediction"),
|
142 |
+
gr.Image(label="Shapley Values"),
|
143 |
+
],
|
144 |
+
title="Logistic Regression Profit Prediction",
|
145 |
+
description="Create your own purchases and see if the Logistic Regression model predicts they will make above or below the median profit\n\nValid regions: ['Central', 'East', 'South', 'West']\n\nValid product categories: ['Furniture', 'Office Supplies', 'Technology']\n\nValid product sub-categories: ['Accessories', 'Appliances', 'Art', 'Binders', 'Bookcases', 'Chairs', 'Copiers', 'Envelopes', 'Fasteners', 'Furnishings', 'Labels', 'Machines', 'Paper', 'Phones', 'Storage', 'Supplies', 'Tables']",
|
146 |
+
)
|
147 |
+
|
148 |
+
SVM_tab = gr.Interface(
|
149 |
+
fn=SVM_predict,
|
150 |
+
inputs=["text", "text", "text", "number", "number"],
|
151 |
+
outputs=[
|
152 |
+
gr.Label(label="Model Prediction"),
|
153 |
+
gr.Image(label="Shapley Values"),
|
154 |
+
],
|
155 |
+
title="SVM Profit Prediction",
|
156 |
+
description="Create your own purchases and see if the SVM model predicts they will make above or below the median profit\n\nValid regions: ['Central', 'East', 'South', 'West']\n\nValid product categories: ['Furniture', 'Office Supplies', 'Technology']\n\nValid product sub-categories: ['Accessories', 'Appliances', 'Art', 'Binders', 'Bookcases', 'Chairs', 'Copiers', 'Envelopes', 'Fasteners', 'Furnishings', 'Labels', 'Machines', 'Paper', 'Phones', 'Storage', 'Supplies', 'Tables']",
|
157 |
+
)
|
158 |
+
|
159 |
+
XGB_tab = gr.Interface(
|
160 |
+
fn=XGB_predict,
|
161 |
+
inputs=["text", "text", "text", "number", "number"],
|
162 |
+
outputs=[
|
163 |
+
gr.Label(label="Model Prediction"),
|
164 |
+
gr.Image(label="Shapley Values"),
|
165 |
+
],
|
166 |
+
title="XGB Profit Prediction",
|
167 |
+
description="Create your own purchases and see if the XGB model predicts they will make above or below the median profit\n\nValid regions: ['Central', 'East', 'South', 'West']\n\nValid product categories: ['Furniture', 'Office Supplies', 'Technology']\n\nValid product sub-categories: ['Accessories', 'Appliances', 'Art', 'Binders', 'Bookcases', 'Chairs', 'Copiers', 'Envelopes', 'Fasteners', 'Furnishings', 'Labels', 'Machines', 'Paper', 'Phones', 'Storage', 'Supplies', 'Tables']",
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
demo = gr.TabbedInterface([LogReg_tab, SVM_tab, XGB_tab], tab_names=["Logistic Regression", "SVM", "XGB"], theme=gr.themes.Soft())
|
173 |
+
|
174 |
+
demo.launch(debug=True, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.0.3
|
2 |
+
numpy==1.25.2
|
3 |
+
scikit-learn==1.2.2
|
4 |
+
shap==0.45.0
|
5 |
+
shapely==2.0.4
|
6 |
+
xgboost==2.0.3
|
7 |
+
matplotlib==3.7.1
|
8 |
+
joblib==1.4.0
|