import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import SGDClassifier from sklearn.metrics import classification_report, confusion_matrix, make_scorer, f1_score import shap import xgboost as xgb import gradio as gr import matplotlib.pyplot as plt import joblib SVM = joblib.load('SVM.pkl') Log_Reg = joblib.load('Log_Reg.pkl') XGB = xgb.XGBClassifier() XGB.load_model('XGB.model') df = pd.read_csv('Superstore.csv') df.dropna(subset=["Region", "Category", "Sub-Category", "Quantity", "Discount"], inplace=True) MEDIAN = 8.662 # from the exploratory analysis file RANDOM_STATE = 42 # random seed to ensure results are reproducible region=np.unique(df['Region'], return_inverse=True)[1] category=np.unique(df['Category'], return_inverse=True)[1] subCategory=np.unique(df['Sub-Category'], return_inverse=True)[1] # turn quantity, discount, and profit columns into vectors of numbers quantity = df["Quantity"].to_numpy() discount = df["Discount"].to_numpy() profit = df["Profit"].to_numpy() vectorizedDataset = np.empty((len(region), 5)) labels = np.empty(len(region)) # generate feature vectors for i in range(0, len(region)): data = np.zeros((1, 5)) data[0][0] = region[i] data[0][1] = category[i] data[0][2] = subCategory[i] data[0][3] = quantity[i] data[0][4] = discount[i] vectorizedDataset[i] = data if (profit[i] > MEDIAN): labels[i] = 1 else: labels[i] = 0 train, test, trainLabels, testLabels = train_test_split(vectorizedDataset, labels, test_size=0.3, random_state=RANDOM_STATE) region_label = {'Central': 0, 'East': 1, 'South': 2, 'West': 3} category_label = {'Furniture': 0, 'Office Supplies': 1, 'Technology': 2} sub_category_label = {'Accessories': 0, 'Appliances': 1, 'Art': 2, 'Binders': 3, 'Bookcases': 4, 'Chairs': 5, 'Copiers': 6, 'Envelopes': 7, 'Fasteners': 8, 'Furnishings': 9, 'Labels': 10, 'Machines': 11, 'Paper': 12, 'Phones': 13, 'Storage': 14, 'Supplies': 15, 'Tables': 16} profit_label = {0: 'Below Median Profit', 1: 'Above Median Profit'} feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"] def sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount): try: Region = region_label[Region] Category = category_label[Category] Sub_Category = sub_category_label[Sub_Category] except KeyError: return ["Please provide region, category, and sub category from the pre-defined Superstore dataset classes", None] if Quantity < 1 or Discount < 0: return ["Quantity and Discount must be positive", None] if not isinstance(Quantity, int): return ["Quantity must be an integer", None] if Discount > 1: return ["Discount cannot be greater than one", None] return [Region, Category, Sub_Category] def XGB_predict(Region, Category, Sub_Category, Quantity, Discount): sanitized = sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount) if len(sanitized)==2: return sanitized input = np.array([[sanitized[0], sanitized[1], sanitized[2], Quantity, Discount]]) predicted_class = XGB.predict(input) explainer = shap.Explainer(XGB, test) shap_values = explainer(input) shap_values.feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"] plot = shap.plots.bar(shap_values, show=False) plt.savefig('shap_plot_XGB.png') return [profit_label[predicted_class[0]], 'shap_plot_XGB.png'] def SVM_predict(Region, Category, Sub_Category, Quantity, Discount): sanitized = sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount) if len(sanitized)==2: return sanitized input = np.array([[sanitized[0], sanitized[1], sanitized[2], Quantity, Discount]]) predicted_class = SVM.predict(input) explainer = shap.Explainer(SVM, test) shap_values = explainer(input) shap_values.feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"] plot = shap.plots.bar(shap_values, show=False) plt.savefig('shap_plot_SVM.png') return [profit_label[predicted_class[0]], 'shap_plot_SVM.png'] def Log_reg_predict(Region, Category, Sub_Category, Quantity, Discount): sanitized = sanitize_inputs(Region, Category, Sub_Category, Quantity, Discount) if len(sanitized)==2: return sanitized input = np.array([[sanitized[0], sanitized[1], sanitized[2], Quantity, Discount]]) predicted_class = Log_Reg.predict(input) explainer = shap.Explainer(Log_Reg, test) shap_values = explainer(input) shap_values.feature_names = ["Region", "Category", "Sub-Category", "Quantity", "Discount"] plot = shap.plots.bar(shap_values, show=False) plt.savefig('shap_plot_LogReg.png') return [profit_label[predicted_class[0]], 'shap_plot_LogReg.png'] LogReg_tab = gr.Interface( fn=Log_reg_predict, inputs=["text", "text", "text", "number", "number"], outputs=[ gr.Label(label="Model Prediction"), gr.Image(label="Shapley Values"), ], title="Logistic Regression Profit Prediction", description="Create your own purchases and see if the Logistic Regression model predicts they will make above or below the median profit\n\nValid regions: ['Central', 'East', 'South', 'West']\n\nValid product categories: ['Furniture', 'Office Supplies', 'Technology']\n\nValid product sub-categories: ['Accessories', 'Appliances', 'Art', 'Binders', 'Bookcases', 'Chairs', 'Copiers', 'Envelopes', 'Fasteners', 'Furnishings', 'Labels', 'Machines', 'Paper', 'Phones', 'Storage', 'Supplies', 'Tables']", ) SVM_tab = gr.Interface( fn=SVM_predict, inputs=["text", "text", "text", "number", "number"], outputs=[ gr.Label(label="Model Prediction"), gr.Image(label="Shapley Values"), ], title="SVM Profit Prediction", description="Create your own purchases and see if the SVM model predicts they will make above or below the median profit\n\nValid regions: ['Central', 'East', 'South', 'West']\n\nValid product categories: ['Furniture', 'Office Supplies', 'Technology']\n\nValid product sub-categories: ['Accessories', 'Appliances', 'Art', 'Binders', 'Bookcases', 'Chairs', 'Copiers', 'Envelopes', 'Fasteners', 'Furnishings', 'Labels', 'Machines', 'Paper', 'Phones', 'Storage', 'Supplies', 'Tables']", ) XGB_tab = gr.Interface( fn=XGB_predict, inputs=["text", "text", "text", "number", "number"], outputs=[ gr.Label(label="Model Prediction"), gr.Image(label="Shapley Values"), ], title="XGB Profit Prediction", description="Create your own purchases and see if the XGB model predicts they will make above or below the median profit\n\nValid regions: ['Central', 'East', 'South', 'West']\n\nValid product categories: ['Furniture', 'Office Supplies', 'Technology']\n\nValid product sub-categories: ['Accessories', 'Appliances', 'Art', 'Binders', 'Bookcases', 'Chairs', 'Copiers', 'Envelopes', 'Fasteners', 'Furnishings', 'Labels', 'Machines', 'Paper', 'Phones', 'Storage', 'Supplies', 'Tables']", ) demo = gr.TabbedInterface([LogReg_tab, SVM_tab, XGB_tab], tab_names=["Logistic Regression", "SVM", "XGB"], theme=gr.themes.Soft()) demo.launch(debug=True, share=True)