Spaces:
Running
Running
John Guerrerio
commited on
Commit
•
b947961
1
Parent(s):
5792adf
first take at deployment
Browse files- .gitignore +2 -0
- app.py +113 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
generated_*
|
2 |
+
venv
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import torchvision.models as models
|
6 |
+
from torchvision.utils import save_image
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
IMAGE_SIZE = 244 # VGG image input size - we use VGG 19 as our pretrained CNN
|
11 |
+
|
12 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
cnn = models.vgg19(weights=None)
|
15 |
+
state_dict = torch.load("vgg19-dcbb9e9d.pth")
|
16 |
+
cnn.load_state_dict(state_dict)
|
17 |
+
|
18 |
+
class VGG(nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super(VGG, self).__init__()
|
21 |
+
self.layers = ['0', '5', '10', '19', '28'] # layers we use as representations
|
22 |
+
self.model = cnn.features[:29] # we don't care about later layers
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
features = []
|
26 |
+
|
27 |
+
for layer_num, layer in enumerate(self.model):
|
28 |
+
x = layer(x)
|
29 |
+
|
30 |
+
# we don't care about the model output - we care about the output of individual layers
|
31 |
+
if str(layer_num) in self.layers:
|
32 |
+
features.append(x)
|
33 |
+
|
34 |
+
return features
|
35 |
+
|
36 |
+
|
37 |
+
gradio_transforms = transforms.Compose([
|
38 |
+
transforms.ToTensor(),
|
39 |
+
transforms.Resize([IMAGE_SIZE, IMAGE_SIZE])
|
40 |
+
])
|
41 |
+
|
42 |
+
|
43 |
+
def sanitize_inputs(epochs, lr, cl, sl):
|
44 |
+
if epochs < 1:
|
45 |
+
return ["Epochs must be positive", None]
|
46 |
+
if not isinstance(epochs, int):
|
47 |
+
return ["Epochs must be an integer", None]
|
48 |
+
if lr < 0:
|
49 |
+
return ["Learning rate must be positive", None]
|
50 |
+
if lr > 1:
|
51 |
+
return ["Learning rate must be less than one", None]
|
52 |
+
if cl < 0 or cl > 1:
|
53 |
+
return ["Content loss weight must be between 0 and 1", None]
|
54 |
+
if sl < 0 or sl > 1:
|
55 |
+
return ["Style loss weight must be between 0 and 1", None]
|
56 |
+
|
57 |
+
return None
|
58 |
+
|
59 |
+
def train(Epochs, Learning_Rate, Content_Loss, Style_Loss, Content_Image, Style_Image):
|
60 |
+
errors = sanitize_inputs(Epochs, Learning_Rate, Content_Loss, Style_Loss)
|
61 |
+
if errors is not None:
|
62 |
+
return errors
|
63 |
+
|
64 |
+
test = Content_Image
|
65 |
+
|
66 |
+
content = gradio_transforms(Content_Image).unsqueeze(0).to(device)
|
67 |
+
style = gradio_transforms(Style_Image).unsqueeze(0).to(device)
|
68 |
+
generated = content.clone().requires_grad_(True).to(device)
|
69 |
+
|
70 |
+
model = VGG().to(device).eval()
|
71 |
+
optimizer = optim.Adam([generated], lr=Learning_Rate)
|
72 |
+
|
73 |
+
for epoch in range(Epochs):
|
74 |
+
generatedFeatures = model(generated)
|
75 |
+
contentFeatures = model(content)
|
76 |
+
styleFeatures = model(style)
|
77 |
+
|
78 |
+
styleLoss = 0
|
79 |
+
contentLoss = 0
|
80 |
+
|
81 |
+
for genFeat, contFeat, styleFeat in zip(generatedFeatures, contentFeatures, styleFeatures):
|
82 |
+
batch_size, channel, height, width = genFeat.shape
|
83 |
+
|
84 |
+
contentLoss += torch.mean((genFeat - contFeat) ** 2)
|
85 |
+
|
86 |
+
G = genFeat.view(channel, height * width).mm(genFeat.view(channel, height * width).t())
|
87 |
+
A = styleFeat.view(channel, height * width).mm(styleFeat.view(channel, height * width).t())
|
88 |
+
|
89 |
+
styleLoss += torch.mean((G - A) ** 2)
|
90 |
+
|
91 |
+
total_loss = Content_Loss * contentLoss + Style_Loss * styleLoss
|
92 |
+
optimizer.zero_grad()
|
93 |
+
total_loss.backward()
|
94 |
+
optimizer.step()
|
95 |
+
|
96 |
+
|
97 |
+
save_image(generated, "generated_gradio.png")
|
98 |
+
|
99 |
+
return ["No errors! Enjoy your new image!", "generated_gradio.png"]
|
100 |
+
|
101 |
+
demo = gr.Interface(
|
102 |
+
fn=train,
|
103 |
+
inputs=["number", "number", "number", "number", "image", "image"],
|
104 |
+
outputs=[
|
105 |
+
gr.Label(label="Error Messages"),
|
106 |
+
gr.Image(label="Generated Image"),
|
107 |
+
],
|
108 |
+
title="Neural Style Transfer",
|
109 |
+
description="Perform neural style transfer on images of your choice! Provide a content image that contains the content you want to transform and a style image that contains the style you want to emulate.\n\nNote: Huggingface requires users to pay to gain access to GPUs, so this model is hosted on a cpu. Training for many epochs will take a VERY long time. Using a larger learning rate (e.g., 0.01) can help reduce the number of epochs you need.",
|
110 |
+
theme=gr.themes.Soft()
|
111 |
+
)
|
112 |
+
|
113 |
+
demo.launch(debug=True, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.2.1
|
2 |
+
torchvision==0.17.1
|
3 |
+
matplotlib==3.7.1
|
4 |
+
numpy==1.25.2
|