Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,682 Bytes
890e483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
"""Contains all of the components that can be used with Gradio Interface / Blocks.
Along with the docs for each component, you can find the names of example demos that use
each component. These demos are located in the `demo` directory."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import json
import gradio as gr
# import openai
import os
import traceback
import requests
# import markdown
import csv
import mdtex2html
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
def postprocess(
self, y: List[Tuple[str | None, str | None]]
) -> List[Tuple[str | None, str | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML.
"""
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
# None if message is None else markdown.markdown(message),
# None if response is None else markdown.markdown(response),
None if message is None else mdtex2html.convert(message),
None if response is None else mdtex2html.convert(response),
)
return y
def parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
firstline = False
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
# line = line.replace("‘", "'")
# line = line.replace("“", '"')
line = line.replace("`", "\`")
# line = line.replace("\"", "`\"`")
# line = line.replace("\'", "`\'`")
# line = line.replace("'``'", "''")
# line = line.replace("&", "&")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False, retry_on_crash = False, stream = True): # repetition_penalty, top_k
if retry_on_crash:
retry = True
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
chat_counter = len(history) // 2
print(f"chat_counter - {chat_counter}")
messages = []
if chat_counter:
for index in range(0, 2*chat_counter, 2):
temp1 = {}
temp1["role"] = "user"
temp1["content"] = history[index]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = history[index+1]
if temp1["content"] != "":
if temp2["content"] != "" or retry:
messages.append(temp1)
messages.append(temp2)
else:
messages[-1]['content'] = temp2['content']
if retry and chat_counter:
if retry_on_crash:
messages = messages[-6:]
messages.pop()
elif summary:
history = [*[i["content"] for i in messages[-2:]], "我们刚刚聊了什么?"]
messages.append(compose_user(
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。"))
else:
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
chat_counter += 1
messages = [compose_system(system_prompt), *messages]
# messages
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if not summary:
history.append(inputs)
else:
print("精简中...")
print(f"payload: {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
try:
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
except:
history.append("")
chatbot.append(inputs, "")
yield history, chatbot, f"出现了网络错误"
return
token_counter = 0
partial_words = ""
counter = 0
if stream:
chatbot.append((parse_text(history[-1]), ""))
for chunk in response.iter_lines():
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
# decode each line as response data is in bytes
try:
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}"
yield chatbot, history, status_text
break
except Exception as e:
traceback.print_exc()
if not retry_on_crash:
print("正在尝试使用缩短的context重新生成……")
chatbot.pop()
history.append("")
yield next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=False, retry_on_crash=True, stream=False))
else:
msg = "☹️发生了错误:生成失败,请检查网络"
print(msg)
history.append(inputs, "")
chatbot.append(inputs, msg)
yield chatbot, history, "status: ERROR"
break
chunkjson = json.loads(chunk.decode()[6:])
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}"
partial_words = partial_words + \
json.loads(chunk.decode()[6:])[
'choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chatbot[-1] = (parse_text(history[-2]), parse_text(history[-1]))
token_counter += 1
yield chatbot, history, status_text
else:
try:
responsejson = json.loads(response.text)
content = responsejson["choices"][0]["message"]["content"]
history.append(content)
chatbot.append((parse_text(history[-2]), parse_text(content)))
status_text = "精简完成"
except:
chatbot.append((parse_text(history[-1]), "☹️发生了错误,请检查网络连接或者稍后再试。"))
status_text = "status: ERROR"
yield chatbot, history, status_text
def delete_last_conversation(chatbot, history):
if "☹️发生了错误" in chatbot[-1][1]:
chatbot.pop()
print(history)
return chatbot, history
history.pop()
history.pop()
print(history)
return chatbot, history
def save_chat_history(filename, system, history, chatbot):
if filename == "":
return
if not filename.endswith(".json"):
filename += ".json"
os.makedirs(HISTORY_DIR, exist_ok=True)
json_s = {"system": system, "history": history, "chatbot": chatbot}
print(json_s)
with open(os.path.join(HISTORY_DIR, filename), "w") as f:
json.dump(json_s, f)
def load_chat_history(filename):
with open(os.path.join(HISTORY_DIR, filename), "r") as f:
json_s = json.load(f)
print(json_s)
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
def get_file_names(dir, plain=False, filetype=".json"):
# find all json files in the current directory and return their names
try:
files = sorted([f for f in os.listdir(dir) if f.endswith(filetype)])
except FileNotFoundError:
files = []
if plain:
return files
else:
return gr.Dropdown.update(choices=files)
def get_history_names(plain=False):
return get_file_names(HISTORY_DIR, plain)
def load_template(filename, mode=0):
lines = []
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile:
reader = csv.reader(csvfile)
lines = list(reader)
lines = lines[1:]
if mode == 1:
return sorted([row[0] for row in lines])
elif mode == 2:
return {row[0]:row[1] for row in lines}
else:
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=sorted([row[0] for row in lines]))
def get_template_names(plain=False):
return get_file_names(TEMPLATES_DIR, plain, filetype=".csv")
def reset_state():
return [], []
def compose_system(system_prompt):
return {"role": "system", "content": system_prompt}
def compose_user(user_input):
return {"role": "user", "content": user_input}
def reset_textbox():
return gr.update(value='')
|