Johnny-Z commited on
Commit
b2a709a
1 Parent(s): a3274d2

Upload 3 files

Browse files
Files changed (3) hide show
  1. aesthetic_predictor_huber_ad_ep7.pth +3 -0
  2. app.py +151 -0
  3. requirements.txt +6 -0
aesthetic_predictor_huber_ad_ep7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4791de2a7ce900a978d66a067a60bd3924bf8dc0b85f90426dfe9673a1de68cb
3
+ size 33252658
app.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from transformers import AutoModel, BitImageProcessor, SiglipImageProcessor, SiglipVisionModel
5
+ from PIL import Image, ImageOps
6
+ from sklearn.metrics.pairwise import cosine_similarity
7
+ import torch.nn as nn
8
+
9
+ device = torch.device('cpu')
10
+ torch.set_num_threads(4)
11
+
12
+ processor_d = BitImageProcessor(do_center_crop=False, do_convert_rgb=False, do_normalize=True, do_rescale=True, do_resize=False, image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225], resample=3, rescale_factor=0.00392156862745098)
13
+ model_d = AutoModel.from_pretrained('facebook/dinov2-base', attn_implementation="sdpa").to(device)
14
+ processor_s = SiglipImageProcessor.from_pretrained('google/siglip-so400m-patch14-384')
15
+ model_s = SiglipVisionModel.from_pretrained('google/siglip-so400m-patch14-384', attn_implementation="sdpa").to(device)
16
+
17
+ class ResidualBlock(nn.Module):
18
+ def __init__(self, input_size):
19
+ super(ResidualBlock, self).__init__()
20
+ self.linear1 = nn.Linear(input_size, input_size // 2)
21
+ self.LayerNorm1 = nn.LayerNorm(input_size // 2)
22
+ self.activation1 = nn.Mish()
23
+
24
+ self.linear2 = nn.Linear(input_size // 2, input_size // 4)
25
+ self.LayerNorm2 = nn.LayerNorm(input_size // 4)
26
+ self.activation2 = nn.Mish()
27
+
28
+ self.linear3 = nn.Linear(input_size // 4, input_size // 2)
29
+ self.LayerNorm3 = nn.LayerNorm(input_size // 2)
30
+ self.activation3 = nn.Mish()
31
+
32
+ self.linear4 = nn.Linear(input_size // 2, input_size)
33
+ self.LayerNorm4 = nn.LayerNorm(input_size)
34
+ self.activation4 = nn.Mish()
35
+
36
+ self.shortcut = nn.Linear(input_size, input_size)
37
+
38
+ def forward(self, x):
39
+ identity = self.shortcut(x)
40
+ out = self.linear1(x)
41
+ out = self.LayerNorm1(out)
42
+ out = self.activation1(out)
43
+
44
+ out = self.linear2(out)
45
+ out = self.LayerNorm2(out)
46
+ out = self.activation2(out)
47
+
48
+ out = self.linear3(out)
49
+ out = self.LayerNorm3(out)
50
+ out = self.activation3(out)
51
+
52
+ out = self.linear4(out)
53
+ out = self.LayerNorm4(out)
54
+ out = self.activation4(out)
55
+
56
+ out += identity
57
+
58
+ return out
59
+
60
+ class MLP(nn.Module):
61
+ def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
62
+ super().__init__()
63
+ self.input_size = input_size
64
+ self.xcol = xcol
65
+ self.ycol = ycol
66
+ self.layers = nn.Sequential(
67
+ ResidualBlock(self.input_size),
68
+ nn.Mish(),
69
+ nn.Linear(1920, 1)
70
+ )
71
+
72
+ def forward(self, x):
73
+ return self.layers(x)
74
+
75
+ mlp = MLP(1920)
76
+
77
+ s = torch.load("./aesthetic_predictor_huber_ad_ep7.pth", map_location=torch.device('cpu'))
78
+
79
+ mlp.load_state_dict(s)
80
+
81
+ mlp.to(device)
82
+
83
+ mlp.eval()
84
+
85
+ def normalized(a, axis=-1, order=2):
86
+ l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
87
+ l2[l2 == 0] = 1
88
+ return a / np.expand_dims(l2, axis)
89
+
90
+ def process_image(image, device):
91
+ image = image.convert('RGBA')
92
+ background = Image.new('RGBA', image.size, (255, 255, 255, 255))
93
+ image = Image.alpha_composite(background, image).convert('RGB')
94
+
95
+ max_side = 518
96
+ ratio = max_side / max(image.size)
97
+ new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio))
98
+ image_d = image.resize(new_size, Image.LANCZOS)
99
+ max_side_s = 384
100
+ ratio_s = max_side_s / max(image.size)
101
+ new_size_s = (int(image.size[0] * ratio_s), int(image.size[1] * ratio_s))
102
+ image_resized = image.resize(new_size_s, Image.LANCZOS)
103
+
104
+ image_s = ImageOps.pad(image_resized, (384, 384), color=(255, 255, 255))
105
+
106
+ inputs_d = processor_d(image_d, return_tensors="pt").to(device)
107
+ inputs_s = processor_s(image_s, return_tensors="pt").to(device)
108
+
109
+ with torch.no_grad():
110
+ outputs_d = model_d(**inputs_d)
111
+ outputs_s = model_s(**inputs_s)
112
+ class_token_d = normalized(outputs_d.pooler_output.cpu().detach().numpy())
113
+ class_token_s = normalized(outputs_s.pooler_output.cpu().detach().numpy())
114
+ im_emb_arr = np.concatenate((class_token_s, class_token_d), axis=1)
115
+
116
+ prediction_value = mlp(torch.from_numpy(im_emb_arr).to(device).type(torch.FloatTensor)).item()
117
+
118
+ return im_emb_arr, prediction_value
119
+
120
+
121
+ def infer(image1, image2):
122
+ try:
123
+
124
+ features1, prediction_value1 = process_image(image1, device)
125
+ features2, prediction_value2 = process_image(image2, device)
126
+
127
+ cos_sim_features = cosine_similarity(features1, features2)[0][0]
128
+
129
+ return cos_sim_features, prediction_value1, prediction_value2
130
+ except Exception as e:
131
+ print(f"Error during inference: {e}")
132
+ return "Error", "Error", "Error"
133
+
134
+
135
+ with gr.Blocks() as iface:
136
+ gr.Markdown("# Anime Aesthetic Predictor Based on Twitter User Preferences\nUpload two images to calculate the aesthetic score (0-10).")
137
+ with gr.Row():
138
+ image1 = gr.Image(type="pil")
139
+ image2 = gr.Image(type="pil")
140
+ with gr.Row():
141
+ prediction1 = gr.Textbox(label="Aesthetic Score 1")
142
+ prediction2 = gr.Textbox(label="Aesthetic Score 2")
143
+ with gr.Row():
144
+ feature_similarity = gr.Textbox(label="Feature Similarity")
145
+ with gr.Row():
146
+ submit_btn = gr.Button("Submit")
147
+
148
+ submit_btn.click(infer, inputs=[image1, image2], outputs=[feature_similarity, prediction1, prediction2])
149
+
150
+ iface.queue(max_size=10)
151
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ numpy<3
3
+ torch
4
+ transformers
5
+ Pillow
6
+ scikit-learn