import gradio as gr import numpy as np import torch from transformers import AutoModel, BitImageProcessor, SiglipImageProcessor, SiglipVisionModel from PIL import Image, ImageOps from sklearn.metrics.pairwise import cosine_similarity import torch.nn as nn device = torch.device('cpu') torch.set_num_threads(4) processor_d = BitImageProcessor(do_center_crop=False, do_convert_rgb=False, do_normalize=True, do_rescale=True, do_resize=False, image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225], resample=3, rescale_factor=0.00392156862745098) model_d = AutoModel.from_pretrained('facebook/dinov2-base', attn_implementation="sdpa").to(device) processor_s = SiglipImageProcessor.from_pretrained('google/siglip-so400m-patch14-384') model_s = SiglipVisionModel.from_pretrained('google/siglip-so400m-patch14-384', attn_implementation="sdpa").to(device) class ResidualBlock(nn.Module): def __init__(self, input_size): super(ResidualBlock, self).__init__() self.linear1 = nn.Linear(input_size, input_size // 2) self.LayerNorm1 = nn.LayerNorm(input_size // 2) self.activation1 = nn.Mish() self.linear2 = nn.Linear(input_size // 2, input_size // 4) self.LayerNorm2 = nn.LayerNorm(input_size // 4) self.activation2 = nn.Mish() self.linear3 = nn.Linear(input_size // 4, input_size // 2) self.LayerNorm3 = nn.LayerNorm(input_size // 2) self.activation3 = nn.Mish() self.linear4 = nn.Linear(input_size // 2, input_size) self.LayerNorm4 = nn.LayerNorm(input_size) self.activation4 = nn.Mish() self.shortcut = nn.Linear(input_size, input_size) def forward(self, x): identity = self.shortcut(x) out = self.linear1(x) out = self.LayerNorm1(out) out = self.activation1(out) out = self.linear2(out) out = self.LayerNorm2(out) out = self.activation2(out) out = self.linear3(out) out = self.LayerNorm3(out) out = self.activation3(out) out = self.linear4(out) out = self.LayerNorm4(out) out = self.activation4(out) out += identity return out class MLP(nn.Module): def __init__(self, input_size, xcol='emb', ycol='avg_rating'): super().__init__() self.input_size = input_size self.xcol = xcol self.ycol = ycol self.layers = nn.Sequential( ResidualBlock(self.input_size), nn.Mish(), nn.Linear(1920, 1) ) def forward(self, x): return self.layers(x) mlp = MLP(1920) s = torch.load("./aesthetic_predictor_huber_ad_ep7.pth", map_location=torch.device('cpu')) mlp.load_state_dict(s) mlp.to(device) mlp.eval() def normalized(a, axis=-1, order=2): l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2 == 0] = 1 return a / np.expand_dims(l2, axis) def process_image(image, device): image = image.convert('RGBA') background = Image.new('RGBA', image.size, (255, 255, 255, 255)) image = Image.alpha_composite(background, image).convert('RGB') max_side = 518 ratio = max_side / max(image.size) new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio)) image_d = image.resize(new_size, Image.LANCZOS) max_side_s = 384 ratio_s = max_side_s / max(image.size) new_size_s = (int(image.size[0] * ratio_s), int(image.size[1] * ratio_s)) image_resized = image.resize(new_size_s, Image.LANCZOS) image_s = ImageOps.pad(image_resized, (384, 384), color=(255, 255, 255)) inputs_d = processor_d(image_d, return_tensors="pt").to(device) inputs_s = processor_s(image_s, return_tensors="pt").to(device) with torch.no_grad(): outputs_d = model_d(**inputs_d) outputs_s = model_s(**inputs_s) class_token_d = normalized(outputs_d.pooler_output.cpu().detach().numpy()) class_token_s = normalized(outputs_s.pooler_output.cpu().detach().numpy()) im_emb_arr = np.concatenate((class_token_s, class_token_d), axis=1) prediction_value = mlp(torch.from_numpy(im_emb_arr).to(device).type(torch.FloatTensor)).item() return im_emb_arr, prediction_value def infer(image1, image2): try: features1, prediction_value1 = process_image(image1, device) features2, prediction_value2 = process_image(image2, device) cos_sim_features = cosine_similarity(features1, features2)[0][0] return cos_sim_features, prediction_value1, prediction_value2 except Exception as e: print(f"Error during inference: {e}") return "Error", "Error", "Error" with gr.Blocks() as iface: gr.Markdown("# Anime Aesthetic Predictor Based on Twitter User Preferences\nUpload two images to calculate the aesthetic score (0-10).") with gr.Row(): image1 = gr.Image(type="pil") image2 = gr.Image(type="pil") with gr.Row(): prediction1 = gr.Textbox(label="Aesthetic Score 1") prediction2 = gr.Textbox(label="Aesthetic Score 2") with gr.Row(): feature_similarity = gr.Textbox(label="Feature Similarity") with gr.Row(): submit_btn = gr.Button("Submit") submit_btn.click(infer, inputs=[image1, image2], outputs=[feature_similarity, prediction1, prediction2]) iface.queue(max_size=10) iface.launch()