Spaces:
Build error
Build error
import torch | |
import julius | |
import torchopenl3 | |
import torchmetrics | |
import pytorch_lightning as pl | |
from typing import Tuple, List, Dict | |
from argparse import ArgumentParser | |
from deepafx_st.probes.cdpam_encoder import CDPAMEncoder | |
from deepafx_st.probes.random_mel import RandomMelProjection | |
import deepafx_st.utils as utils | |
from deepafx_st.utils import DSPMode | |
from deepafx_st.system import System | |
from deepafx_st.data.style import StyleDataset | |
class ProbeSystem(pl.LightningModule): | |
def __init__( | |
self, | |
audio_dir=None, | |
num_classes=5, | |
task="style", | |
encoder_type="deepafx_st_autodiff", | |
deepafx_st_autodiff_ckpt=None, | |
deepafx_st_spsa_ckpt=None, | |
deepafx_st_proxy0_ckpt=None, | |
probe_type="linear", | |
batch_size=32, | |
lr=3e-4, | |
lr_patience=20, | |
patience=10, | |
preload=False, | |
sample_rate=24000, | |
shuffle=True, | |
num_workers=16, | |
**kwargs, | |
): | |
super().__init__() | |
self.save_hyperparameters() | |
if "deepafx_st" in self.hparams.encoder_type: | |
if "autodiff" in self.hparams.encoder_type: | |
self.hparams.deepafx_st_ckpt = self.hparams.deepafx_st_autodiff_ckpt | |
elif "spsa" in self.hparams.encoder_type: | |
self.hparams.deepafx_st_ckpt = self.hparams.deepafx_st_spsa_ckpt | |
elif "proxy0" in self.hparams.encoder_type: | |
self.hparams.deepafx_st_ckpt = self.hparams.deepafx_st_proxy0_ckpt | |
else: | |
raise RuntimeError(f"Invalid encoder_type: {self.hparams.encoder_type}") | |
if self.hparams.deepafx_st_ckpt is None: | |
raise RuntimeError( | |
f"Must supply {self.hparams.encoder_type}_ckpt checkpoint." | |
) | |
use_dsp = DSPMode.NONE | |
system = System.load_from_checkpoint( | |
self.hparams.deepafx_st_ckpt, | |
use_dsp=use_dsp, | |
batch_size=self.hparams.batch_size, | |
spsa_parallel=False, | |
proxy_ckpts=[], | |
strict=False, | |
) | |
system.eval() | |
self.encoder = system.encoder | |
self.hparams.embed_dim = self.encoder.embed_dim | |
# freeze weights | |
for name, param in self.encoder.named_parameters(): | |
param.requires_grad = False | |
elif self.hparams.encoder_type == "openl3": | |
self.encoder = torchopenl3.models.load_audio_embedding_model( | |
input_repr=self.hparams.openl3_input_repr, | |
embedding_size=self.hparams.openl3_embedding_size, | |
content_type=self.hparams.openl3_content_type, | |
) | |
self.hparams.embed_dim = 6144 | |
elif self.hparams.encoder_type == "random_mel": | |
self.encoder = RandomMelProjection( | |
self.hparams.sample_rate, | |
self.hparams.random_mel_embedding_size, | |
self.hparams.random_mel_n_mels, | |
self.hparams.random_mel_n_fft, | |
self.hparams.random_mel_hop_size, | |
) | |
self.hparams.embed_dim = self.hparams.random_mel_embedding_size | |
elif self.hparams.encoder_type == "cdpam": | |
self.encoder = CDPAMEncoder(self.hparams.cdpam_ckpt) | |
self.encoder.eval() | |
self.hparams.embed_dim = self.encoder.embed_dim | |
else: | |
raise ValueError(f"Invalid encoder_type: {self.hparams.encoder_type}") | |
if self.hparams.probe_type == "linear": | |
if self.hparams.task == "style": | |
self.probe = torch.nn.Sequential( | |
torch.nn.Linear(self.hparams.embed_dim, self.hparams.num_classes), | |
# torch.nn.Softmax(-1), | |
) | |
elif self.hparams.probe_type == "mlp": | |
if self.hparams.task == "style": | |
self.probe = torch.nn.Sequential( | |
torch.nn.Linear(self.hparams.embed_dim, 512), | |
torch.nn.ReLU(), | |
torch.nn.Linear(512, 512), | |
torch.nn.ReLU(), | |
torch.nn.Linear(512, self.hparams.num_classes), | |
) | |
self.accuracy = torchmetrics.Accuracy() | |
self.f1_score = torchmetrics.F1Score(self.hparams.num_classes) | |
def forward(self, x): | |
bs, chs, samp = x.size() | |
with torch.no_grad(): | |
if "deepafx_st" in self.hparams.encoder_type: | |
x /= x.abs().max() | |
x *= 10 ** (-12.0 / 20) # with min 12 dBFS headroom | |
e = self.encoder(x) | |
norm = torch.norm(e, p=2, dim=-1, keepdim=True) | |
e = e / norm | |
elif self.hparams.encoder_type == "openl3": | |
# x = julius.resample_frac(x, self.hparams.sample_rate, 48000) | |
e, ts = torchopenl3.get_audio_embedding( | |
x, | |
48000, | |
model=self.encoder, | |
input_repr="mel128", | |
content_type="music", | |
) | |
e = e.permute(0, 2, 1) | |
e = e.mean(dim=-1) | |
# normalize by L2 norm | |
norm = torch.norm(e, p=2, dim=-1, keepdim=True) | |
e = e / norm | |
elif self.hparams.encoder_type == "random_mel": | |
e = self.encoder(x) | |
norm = torch.norm(e, p=2, dim=-1, keepdim=True) | |
e = e / norm | |
elif self.hparams.encoder_type == "cdpam": | |
# x = julius.resample_frac(x, self.hparams.sample_rate, 22050) | |
x = torch.round(x * 32768) | |
e = self.encoder(x) | |
return self.probe(e) | |
def common_step( | |
self, | |
batch: Tuple, | |
batch_idx: int, | |
optimizer_idx: int = 0, | |
train: bool = True, | |
): | |
loss = 0 | |
x, y = batch | |
y_hat = self(x) | |
# compute CE | |
if self.hparams.task == "style": | |
loss = torch.nn.functional.cross_entropy(y_hat, y) | |
if not train: | |
# store audio data | |
data_dict = {"x": x.float().cpu()} | |
else: | |
data_dict = {} | |
self.log( | |
"train_loss" if train else "val_loss", | |
loss, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=False, | |
logger=True, | |
sync_dist=True, | |
) | |
if not train and self.hparams.task == "style": | |
self.log("val_acc_step", self.accuracy(y_hat, y)) | |
self.log("val_f1_step", self.f1_score(y_hat, y)) | |
return loss, data_dict | |
def training_step(self, batch, batch_idx, optimizer_idx=0): | |
loss, _ = self.common_step(batch, batch_idx) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
loss, data_dict = self.common_step(batch, batch_idx, train=False) | |
if batch_idx == 0: | |
return data_dict | |
def validation_epoch_end(self, outputs) -> None: | |
if self.hparams.task == "style": | |
self.log("val_acc_epoch", self.accuracy.compute()) | |
self.log("val_f1_epoch", self.f1_score.compute()) | |
return super().validation_epoch_end(outputs) | |
def configure_optimizers(self): | |
optimizer = torch.optim.AdamW( | |
self.probe.parameters(), | |
lr=self.hparams.lr, | |
betas=(0.9, 0.999), | |
) | |
ms1 = int(self.hparams.max_epochs * 0.8) | |
ms2 = int(self.hparams.max_epochs * 0.95) | |
print( | |
"Learning rate schedule:", | |
f"0 {self.hparams.lr:0.2e} -> ", | |
f"{ms1} {self.hparams.lr*0.1:0.2e} -> ", | |
f"{ms2} {self.hparams.lr*0.01:0.2e}", | |
) | |
scheduler = torch.optim.lr_scheduler.MultiStepLR( | |
optimizer, | |
milestones=[ms1, ms2], | |
gamma=0.1, | |
) | |
return [optimizer], {"scheduler": scheduler, "monitor": "val_loss"} | |
def train_dataloader(self): | |
if self.hparams.task == "style": | |
train_dataset = StyleDataset( | |
self.hparams.audio_dir, | |
"train", | |
sample_rate=self.hparams.encoder_sample_rate, | |
) | |
g = torch.Generator() | |
g.manual_seed(0) | |
return torch.utils.data.DataLoader( | |
train_dataset, | |
num_workers=self.hparams.num_workers, | |
batch_size=self.hparams.batch_size, | |
shuffle=True, | |
worker_init_fn=utils.seed_worker, | |
generator=g, | |
pin_memory=True, | |
) | |
def val_dataloader(self): | |
if self.hparams.task == "style": | |
val_dataset = StyleDataset( | |
self.hparams.audio_dir, | |
subset="val", | |
sample_rate=self.hparams.encoder_sample_rate, | |
) | |
g = torch.Generator() | |
g.manual_seed(0) | |
return torch.utils.data.DataLoader( | |
val_dataset, | |
num_workers=self.hparams.num_workers, | |
batch_size=self.hparams.batch_size, | |
worker_init_fn=utils.seed_worker, | |
generator=g, | |
pin_memory=True, | |
) | |
# add any model hyperparameters here | |
def add_model_specific_args(parent_parser): | |
parser = ArgumentParser(parents=[parent_parser], add_help=False) | |
# --- Model --- | |
parser.add_argument("--encoder_type", type=str, default="deeapfx2") | |
parser.add_argument("--probe_type", type=str, default="linear") | |
parser.add_argument("--task", type=str, default="style") | |
parser.add_argument("--encoder_sample_rate", type=int, default=24000) | |
# --- deeapfx2 --- | |
parser.add_argument("--deepafx_st_autodiff_ckpt", type=str) | |
parser.add_argument("--deepafx_st_spsa_ckpt", type=str) | |
parser.add_argument("--deepafx_st_proxy0_ckpt", type=str) | |
# --- cdpam --- | |
parser.add_argument("--cdpam_ckpt", type=str) | |
# --- openl3 --- | |
parser.add_argument("--openl3_input_repr", type=str, default="mel128") | |
parser.add_argument("--openl3_content_type", type=str, default="env") | |
parser.add_argument("--openl3_embedding_size", type=int, default=6144) | |
# --- random_mel --- | |
parser.add_argument("--random_mel_embedding_size", type=str, default=4096) | |
parser.add_argument("--random_mel_n_fft", type=str, default=4096) | |
parser.add_argument("--random_mel_hop_size", type=str, default=1024) | |
parser.add_argument("--random_mel_n_mels", type=str, default=128) | |
# --- Training --- | |
parser.add_argument("--audio_dir", type=str) | |
parser.add_argument("--num_classes", type=int, default=5) | |
parser.add_argument("--batch_size", type=int, default=32) | |
parser.add_argument("--lr", type=float, default=3e-4) | |
parser.add_argument("--lr_patience", type=int, default=20) | |
parser.add_argument("--patience", type=int, default=10) | |
parser.add_argument("--preload", action="store_true") | |
parser.add_argument("--sample_rate", type=int, default=24000) | |
parser.add_argument("--num_workers", type=int, default=8) | |
return parser | |