|
import gradio as gr |
|
import torch |
|
from diffusers import AutoencoderKL, FluxTransformer2DModel |
|
from diffusers.utils import load_image |
|
from controlnet_flux import FluxControlNetModel |
|
from transformer_flux import FluxTransformer2DModel |
|
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline |
|
from transformers import T5EncoderModel, CLIPTextModel |
|
from PIL import Image, ImageDraw |
|
import numpy as np |
|
|
|
from huggingface_hub import hf_hub_download |
|
from optimum.quanto import freeze, qfloat8, quantize |
|
|
|
|
|
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16) |
|
transformer = FluxTransformer2DModel.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16 |
|
) |
|
|
|
pipe = FluxControlNetInpaintingPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
transformer=transformer, |
|
controlnet=controlnet, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
repo_name = "ByteDance/Hyper-SD" |
|
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" |
|
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) |
|
pipe.fuse_lora(lora_scale=0.125) |
|
pipe.transformer.to(torch.bfloat16) |
|
pipe.controlnet.to(torch.bfloat16) |
|
pipe.to("cuda") |
|
def can_expand(source_width, source_height, target_width, target_height, alignment): |
|
if alignment in ("Left", "Right") and source_width >= target_width: |
|
return False |
|
if alignment in ("Top", "Bottom") and source_height >= target_height: |
|
return False |
|
return True |
|
|
|
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): |
|
target_size = (width, height) |
|
|
|
|
|
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) |
|
new_width = int(image.width * scale_factor) |
|
new_height = int(image.height * scale_factor) |
|
|
|
|
|
source = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
|
|
if resize_option == "Full": |
|
resize_percentage = 100 |
|
elif resize_option == "50%": |
|
resize_percentage = 50 |
|
elif resize_option == "33%": |
|
resize_percentage = 33 |
|
elif resize_option == "25%": |
|
resize_percentage = 25 |
|
else: |
|
resize_percentage = custom_resize_percentage |
|
|
|
|
|
resize_factor = resize_percentage / 100 |
|
new_width = int(source.width * resize_factor) |
|
new_height = int(source.height * resize_factor) |
|
|
|
|
|
new_width = max(new_width, 64) |
|
new_height = max(new_height, 64) |
|
|
|
|
|
source = source.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
|
|
overlap_x = int(new_width * (overlap_percentage / 100)) |
|
overlap_y = int(new_height * (overlap_percentage / 100)) |
|
|
|
|
|
overlap_x = max(overlap_x, 1) |
|
overlap_y = max(overlap_y, 1) |
|
|
|
|
|
if alignment == "Middle": |
|
margin_x = (target_size[0] - new_width) // 2 |
|
margin_y = (target_size[1] - new_height) // 2 |
|
elif alignment == "Left": |
|
margin_x = 0 |
|
margin_y = (target_size[1] - new_height) // 2 |
|
elif alignment == "Right": |
|
margin_x = target_size[0] - new_width |
|
margin_y = (target_size[1] - new_height) // 2 |
|
elif alignment == "Top": |
|
margin_x = (target_size[0] - new_width) // 2 |
|
margin_y = 0 |
|
elif alignment == "Bottom": |
|
margin_x = (target_size[0] - new_width) // 2 |
|
margin_y = target_size[1] - new_height |
|
|
|
|
|
margin_x = max(0, min(margin_x, target_size[0] - new_width)) |
|
margin_y = max(0, min(margin_y, target_size[1] - new_height)) |
|
|
|
|
|
background = Image.new('RGB', target_size, (255, 255, 255)) |
|
background.paste(source, (margin_x, margin_y)) |
|
|
|
|
|
mask = Image.new('L', target_size, 255) |
|
mask_draw = ImageDraw.Draw(mask) |
|
|
|
|
|
white_gaps_patch = 2 |
|
|
|
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch |
|
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch |
|
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch |
|
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch |
|
|
|
if alignment == "Left": |
|
left_overlap = margin_x + overlap_x if overlap_left else margin_x |
|
elif alignment == "Right": |
|
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width |
|
elif alignment == "Top": |
|
top_overlap = margin_y + overlap_y if overlap_top else margin_y |
|
elif alignment == "Bottom": |
|
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height |
|
|
|
|
|
mask_draw.rectangle([ |
|
(left_overlap, top_overlap), |
|
(right_overlap, bottom_overlap) |
|
], fill=0) |
|
|
|
return background, mask |
|
|
|
|
|
def inpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, progress=gr.Progress(track_tqdm=True)): |
|
|
|
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) |
|
|
|
if not can_expand(background.width, background.height, width, height, alignment): |
|
alignment = "Middle" |
|
|
|
cnet_image = background.copy() |
|
cnet_image.paste(0, (0, 0), mask) |
|
|
|
final_prompt = f"{prompt_input} , high quality, 4k" |
|
|
|
|
|
|
|
result = pipe( |
|
prompt=final_prompt, |
|
height=height, |
|
width=width, |
|
control_image=cnet_image, |
|
control_mask=mask, |
|
num_inference_steps=num_inference_steps, |
|
|
|
controlnet_conditioning_scale=0.9, |
|
guidance_scale=3.5, |
|
negative_prompt="", |
|
true_guidance_scale=3.5, |
|
).images[0] |
|
|
|
result = result.convert("RGBA") |
|
cnet_image.paste(result, (0, 0), mask) |
|
|
|
return cnet_image, background |
|
|
|
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): |
|
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) |
|
|
|
preview = background.copy().convert('RGBA') |
|
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) |
|
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0)) |
|
red_mask.paste(red_overlay, (0, 0), mask) |
|
preview = Image.alpha_composite(preview, red_mask) |
|
|
|
return preview |
|
|
|
def clear_result(): |
|
return gr.update(value=None) |
|
|
|
def preload_presets(target_ratio, ui_width, ui_height): |
|
if target_ratio == "9:16": |
|
return 720, 1280, gr.update() |
|
elif target_ratio == "16:9": |
|
return 1280, 720, gr.update() |
|
elif target_ratio == "1:1": |
|
return 1024, 1024, gr.update() |
|
elif target_ratio == "Custom": |
|
return ui_width, ui_height, gr.update(open=True) |
|
|
|
def select_the_right_preset(user_width, user_height): |
|
if user_width == 720 and user_height == 1280: |
|
return "9:16" |
|
elif user_width == 1280 and user_height == 720: |
|
return "16:9" |
|
elif user_width == 1024 and user_height == 1024: |
|
return "1:1" |
|
else: |
|
return "Custom" |
|
|
|
def toggle_custom_resize_slider(resize_option): |
|
return gr.update(visible=(resize_option == "Custom")) |
|
|
|
def update_history(new_image, history): |
|
if history is None: |
|
history = [] |
|
history.insert(0, new_image) |
|
return history |
|
|
|
css = """ |
|
.gradio-container { |
|
width: 1200px !important; |
|
} |
|
""" |
|
|
|
title = """<h1 align="center">FLUX Image Outpaint</h1> |
|
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div> |
|
<div align="center">Using <a href="alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta" target="_blank"><code>FLUX.1-dev-Controlnet-Inpainting-Beta</code></a> + <a href="https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-FLUX.1-dev-8steps-lora.safetensors" target="_blank">Hyper-FLUX.1-dev-8steps-lora</a></div> |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(): |
|
gr.HTML(title) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image( |
|
type="pil", |
|
label="Input Image" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input = gr.Textbox(label="Prompt (Optional)") |
|
with gr.Column(scale=1): |
|
run_button = gr.Button("Generate") |
|
|
|
with gr.Row(): |
|
target_ratio = gr.Radio( |
|
label="Expected Ratio", |
|
choices=["9:16", "16:9", "1:1", "Custom"], |
|
value="9:16", |
|
scale=2 |
|
) |
|
|
|
alignment_dropdown = gr.Dropdown( |
|
choices=["Middle", "Left", "Right", "Top", "Bottom"], |
|
value="Middle", |
|
label="Alignment" |
|
) |
|
|
|
with gr.Accordion(label="Advanced settings", open=False) as settings_panel: |
|
with gr.Column(): |
|
with gr.Row(): |
|
width_slider = gr.Slider( |
|
label="Target Width", |
|
minimum=720, |
|
maximum=1536, |
|
step=8, |
|
value=720, |
|
) |
|
height_slider = gr.Slider( |
|
label="Target Height", |
|
minimum=720, |
|
maximum=1536, |
|
step=8, |
|
value=1280, |
|
) |
|
|
|
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) |
|
with gr.Group(): |
|
overlap_percentage = gr.Slider( |
|
label="Mask overlap (%)", |
|
minimum=1, |
|
maximum=50, |
|
value=10, |
|
step=1 |
|
) |
|
with gr.Row(): |
|
overlap_top = gr.Checkbox(label="Overlap Top", value=True) |
|
overlap_right = gr.Checkbox(label="Overlap Right", value=True) |
|
with gr.Row(): |
|
overlap_left = gr.Checkbox(label="Overlap Left", value=True) |
|
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True) |
|
with gr.Row(): |
|
resize_option = gr.Radio( |
|
label="Resize input image", |
|
choices=["Full", "50%", "33%", "25%", "Custom"], |
|
value="Full" |
|
) |
|
custom_resize_percentage = gr.Slider( |
|
label="Custom resize (%)", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
visible=False |
|
) |
|
|
|
with gr.Column(): |
|
preview_button = gr.Button("Preview alignment and mask") |
|
|
|
with gr.Column(): |
|
result = gr.Image( |
|
interactive=False, |
|
label="Generated Image", |
|
) |
|
use_as_input_button = gr.Button("Use as Input Image", visible=False) |
|
with gr.Accordion("History and Mask", open=False): |
|
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) |
|
preview_image = gr.Image(label="Mask preview") |
|
|
|
def use_output_as_input(output_image): |
|
return output_image |
|
|
|
use_as_input_button.click( |
|
fn=use_output_as_input, |
|
inputs=[result], |
|
outputs=[input_image] |
|
) |
|
|
|
target_ratio.change( |
|
fn=preload_presets, |
|
inputs=[target_ratio, width_slider, height_slider], |
|
outputs=[width_slider, height_slider, settings_panel], |
|
queue=False |
|
) |
|
|
|
width_slider.change( |
|
fn=select_the_right_preset, |
|
inputs=[width_slider, height_slider], |
|
outputs=[target_ratio], |
|
queue=False |
|
) |
|
|
|
height_slider.change( |
|
fn=select_the_right_preset, |
|
inputs=[width_slider, height_slider], |
|
outputs=[target_ratio], |
|
queue=False |
|
) |
|
|
|
resize_option.change( |
|
fn=toggle_custom_resize_slider, |
|
inputs=[resize_option], |
|
outputs=[custom_resize_percentage], |
|
queue=False |
|
) |
|
|
|
run_button.click( |
|
fn=clear_result, |
|
inputs=None, |
|
outputs=result, |
|
).then( |
|
fn=inpaint, |
|
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, |
|
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, |
|
overlap_left, overlap_right, overlap_top, overlap_bottom], |
|
outputs=[result, preview_image], |
|
).then( |
|
fn=lambda x, history: update_history(x, history), |
|
inputs=[result, history_gallery], |
|
outputs=history_gallery, |
|
).then( |
|
fn=lambda: gr.update(visible=True), |
|
inputs=None, |
|
outputs=use_as_input_button, |
|
) |
|
|
|
prompt_input.submit( |
|
fn=clear_result, |
|
inputs=None, |
|
outputs=result, |
|
).then( |
|
fn=inpaint, |
|
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, |
|
overlap_left, overlap_right, overlap_top, overlap_bottom], |
|
outputs=[result, preview_image], |
|
).then( |
|
fn=lambda x, history: update_history(x, history), |
|
inputs=[result, history_gallery], |
|
outputs=history_gallery, |
|
).then( |
|
fn=lambda: gr.update(visible=True), |
|
inputs=None, |
|
outputs=use_as_input_button, |
|
) |
|
|
|
preview_button.click( |
|
fn=preview_image_and_mask, |
|
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown, |
|
overlap_left, overlap_right, overlap_top, overlap_bottom], |
|
outputs=preview_image, |
|
queue=False |
|
) |
|
|
|
demo.queue(max_size=12).launch(share=False) |