File size: 13,473 Bytes
49664ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import pandas as pd
import numpy as np
import sqlite3, torch, json, re, os, torch, itertools, nltk
from ast import literal_eval as leval
from tqdm.auto import tqdm
from utils.verbalisation_module import VerbModule
from utils.sentence_retrieval_module import SentenceRetrievalModule
from utils.textual_entailment_module import TextualEntailmentModule
from importlib import reload
from html.parser import HTMLParser
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
import gradio as gr
from bs4 import BeautifulSoup
from cleantext import clean


def verbalisation(claim_df):
    verb_module = VerbModule()
    triples = []
    for _, row in claim_df.iterrows():
        triple = {
            'subject': row['entity_label'],
            'predicate': row['property_label'],
            'object': row['object_label']
        }
        triples.append(triple)


    claim_df['verbalisation'] = verb_module.verbalise_triples(triples)
    claim_df['verbalisation_unks_replaced'] = claim_df['verbalisation'].apply(verb_module.replace_unks_on_sentence)
    claim_df['verbalisation_unks_replaced_then_dropped'] = claim_df['verbalisation'].apply(lambda x: verb_module.replace_unks_on_sentence(x, empty_after=True))
    return claim_df

def setencesSpliter(verbalised_claims_df_final, reference_text_df, update_progress):
    join_df = pd.merge(verbalised_claims_df_final, reference_text_df[['reference_id', 'url', 'html']], on='reference_id', how='left')
    SS_df = join_df[['reference_id','url','verbalisation', 'html']].copy()
    def clean_html(html_content):
        soup = BeautifulSoup(html_content, 'html.parser')
        text = soup.get_text(separator=' ', strip=True)  
        cleaned_text = clean(text,
                            fix_unicode=True,  
                            to_ascii=True, 
                            lower=False,  
                            no_line_breaks=False,  
                            no_urls=True, 
                            no_emails=True,  
                            no_phone_numbers=True, 
                            no_numbers=False,  
                            no_digits=False, 
                            no_currency_symbols=True,  
                            no_punct=False, 
                            replace_with_url="",
                            replace_with_email="",
                            replace_with_phone_number="",
                            replace_with_number="",
                            replace_with_digit="",
                            replace_with_currency_symbol="")
        return cleaned_text
    def split_into_sentences(text):
        sentences = nltk.sent_tokenize(text)
        return sentences
    def slide_sentences(sentences, window_size=2):
        if len(sentences) < window_size:
            return [" ".join(sentences)]
        return [" ".join(sentences[i:i + window_size]) for i in range(len(sentences) - window_size + 1)]
    
    SS_df['html2text'] = SS_df['html'].apply(clean_html)
    SS_df['nlp_sentences'] = SS_df['html2text'].apply(split_into_sentences)
    SS_df['nlp_sentences_slide_2'] = SS_df['nlp_sentences'].apply(slide_sentences)

    return SS_df[['reference_id','verbalisation','url','nlp_sentences','nlp_sentences_slide_2']]

def evidenceSelection(splited_sentences_from_html, BATCH_SIZE, N_TOP_SENTENCES):
    sr_module = SentenceRetrievalModule(max_len=512)
    sentence_relevance_df = splited_sentences_from_html.copy()
    sentence_relevance_df.rename(columns={'verbalisation': 'final_verbalisation'}, inplace=True)

    def chunks(l, n):
        n = max(1, n)
        return [l[i:i + n] for i in range(0, len(l), n)]
    
    def compute_scores(column_name):
        all_outputs = []
        for _, row in tqdm(sentence_relevance_df.iterrows(), total=sentence_relevance_df.shape[0]):
            outputs = []
            for batch in chunks(row[column_name], BATCH_SIZE):
                batch_outputs = sr_module.score_sentence_pairs([(row['final_verbalisation'], sentence) for sentence in batch])
                outputs += batch_outputs
            all_outputs.append(outputs)
        sentence_relevance_df[f'{column_name}_scores'] = pd.Series(all_outputs)
        assert all(sentence_relevance_df.apply(lambda x: len(x[column_name]) == len(x[f'{column_name}_scores']), axis=1))

    compute_scores('nlp_sentences')
    compute_scores('nlp_sentences_slide_2')

    def get_top_n_sentences(row, column_name, n):
        sentences_with_scores = [{'sentence': t[0], 'score': t[1], 'sentence_id': f"{row.name}_{j}"} for j, t in enumerate(zip(row[column_name], row[f'{column_name}_scores']))]
        return sorted(sentences_with_scores, key=lambda x: x['score'], reverse=True)[:n]

    
    def filter_overlaps(sentences):
        filtered = []
        for evidence in sentences:
            if ';' in evidence['sentence_id']:
                start_id, end_id = evidence['sentence_id'].split(';')
                if not any(start_id in e['sentence_id'].split(';') or end_id in e['sentence_id'].split(';') for e in filtered):
                    filtered.append(evidence)
            else:
                if not any(evidence['sentence_id'] in e['sentence_id'].split(';') for e in filtered):
                    filtered.append(evidence)
        return filtered
    
    def limit_sentence_length(sentence, max_length):
        if len(sentence) > max_length:
            return sentence[:max_length] + '...'
        return sentence

    nlp_sentences_TOP_N, nlp_sentences_slide_2_TOP_N, nlp_sentences_all_TOP_N = [], [], []
    
    for _, row in tqdm(sentence_relevance_df.iterrows(), total=sentence_relevance_df.shape[0]):
        top_n = get_top_n_sentences(row, 'nlp_sentences', N_TOP_SENTENCES)
        top_n = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in top_n]
        nlp_sentences_TOP_N.append(top_n)
        
        top_n_slide_2 = get_top_n_sentences(row, 'nlp_sentences_slide_2', N_TOP_SENTENCES)
        top_n_slide_2 = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in top_n_slide_2]
        nlp_sentences_slide_2_TOP_N.append(top_n_slide_2)
        
        all_sentences = top_n + top_n_slide_2
        all_sentences_sorted = sorted(all_sentences, key=lambda x: x['score'], reverse=True)
        filtered_sentences = filter_overlaps(all_sentences_sorted)
        filtered_sentences = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in filtered_sentences]
        nlp_sentences_all_TOP_N.append(filtered_sentences[:N_TOP_SENTENCES])
    
    sentence_relevance_df['nlp_sentences_TOP_N'] = pd.Series(nlp_sentences_TOP_N)
    sentence_relevance_df['nlp_sentences_slide_2_TOP_N'] = pd.Series(nlp_sentences_slide_2_TOP_N)
    sentence_relevance_df['nlp_sentences_all_TOP_N'] = pd.Series(nlp_sentences_all_TOP_N)
    
    return sentence_relevance_df

def textEntailment(evidence_df, SCORE_THRESHOLD):
    textual_entailment_df = evidence_df.copy()
    te_module = TextualEntailmentModule()

    keys = ['TOP_N', 'slide_2_TOP_N', 'all_TOP_N']
    te_columns = {f'evidence_TE_prob_{key}': [] for key in keys}
    te_columns.update({f'evidence_TE_prob_weighted_{key}': [] for key in keys})
    te_columns.update({f'evidence_TE_labels_{key}': [] for key in keys})
    te_columns.update({f'claim_TE_prob_weighted_sum_{key}': [] for key in keys})
    te_columns.update({f'claim_TE_label_weighted_sum_{key}': [] for key in keys})
    te_columns.update({f'claim_TE_label_malon_{key}': [] for key in keys})

    def process_row(row):
        claim = row['final_verbalisation']
        results = {}
        for key in keys:
            evidence = row[f'nlp_sentences_{key}']
            evidence_size = len(evidence)
            if evidence_size == 0:
                results[key] = {
                    'evidence_TE_prob': [],
                    'evidence_TE_labels': [],
                    'evidence_TE_prob_weighted': [],
                    'claim_TE_prob_weighted_sum': [0, 0, 0],
                    'claim_TE_label_weighted_sum': 'NOT ENOUGH INFO',
                    'claim_TE_label_malon': 'NOT ENOUGH INFO'
                }
                continue

            evidence_TE_prob = te_module.get_batch_scores(
                claims=[claim] * evidence_size,
                evidence=[e['sentence'] for e in evidence]
            )

            evidence_TE_labels = [te_module.get_label_from_scores(s) for s in evidence_TE_prob]

            evidence_TE_prob_weighted = [
                probs * ev['score'] for probs, ev in zip(evidence_TE_prob, evidence)
                if ev['score'] > SCORE_THRESHOLD
            ]

            claim_TE_prob_weighted_sum = np.sum(evidence_TE_prob_weighted, axis=0) if evidence_TE_prob_weighted else [0, 0, 0]

            claim_TE_label_weighted_sum = te_module.get_label_from_scores(claim_TE_prob_weighted_sum) if evidence_TE_prob_weighted else 'NOT ENOUGH INFO'

            claim_TE_label_malon = te_module.get_label_malon(
                [probs for probs, ev in zip(evidence_TE_prob, evidence) if ev['score'] > SCORE_THRESHOLD]
            )

            results[key] = {
                'evidence_TE_prob': evidence_TE_prob,
                'evidence_TE_labels': evidence_TE_labels,
                'evidence_TE_prob_weighted': evidence_TE_prob_weighted,
                'claim_TE_prob_weighted_sum': claim_TE_prob_weighted_sum,
                'claim_TE_label_weighted_sum': claim_TE_label_weighted_sum,
                'claim_TE_label_malon': claim_TE_label_malon
            }
        return results

    for i, row in tqdm(textual_entailment_df.iterrows(), total=textual_entailment_df.shape[0]):
        try:
            result_sets = process_row(row)
            for key in keys:
                for k, v in result_sets[key].items():
                    te_columns[f'{k}_{key}'].append(v)
        except Exception as e:
            print(f"Error processing row {i}: {e}")
            print(row)
            raise

    for key in keys:
        for col in ['evidence_TE_prob', 'evidence_TE_prob_weighted', 'evidence_TE_labels',
                    'claim_TE_prob_weighted_sum', 'claim_TE_label_weighted_sum', 'claim_TE_label_malon']:
            textual_entailment_df[f'{col}_{key}'] = pd.Series(te_columns[f'{col}_{key}'])

    return textual_entailment_df

def TableMaking(verbalised_claims_df_final, result):
    verbalised_claims_df_final.set_index('reference_id', inplace=True)
    result.set_index('reference_id', inplace=True)
    results = pd.concat([verbalised_claims_df_final, result], axis=1)
    results['triple'] = results[['entity_label', 'property_label', 'object_label']].apply(lambda x: ', '.join(x), axis=1)
    all_result = pd.DataFrame()
    for idx, row in results.iterrows():
        aResult = pd.DataFrame(row["nlp_sentences_TOP_N"])[['sentence','score']]
        aResult.rename(columns={'score': 'Relevance_score'}, inplace=True)
        aResult = pd.concat([aResult, pd.DataFrame(row["evidence_TE_labels_all_TOP_N"], columns=['TextEntailment'])], axis=1)
        aResult = pd.concat([aResult, pd.DataFrame(np.max(row["evidence_TE_prob_all_TOP_N"], axis=1), columns=['Entailment_score'])], axis=1)
        aResult = aResult.reindex(columns=['sentence', 'TextEntailment', 'Entailment_score','Relevance_score'])
        aBox = pd.DataFrame({'triple': [row["triple"]], 'url': row['url'],'Results': [aResult]})
        all_result = pd.concat([all_result,aBox], axis=0)

    def dataframe_to_html(all_result):
        html = '<html><head><style>table {border-collapse: collapse; width: 100%;} th, td {border: 1px solid black; padding: 8px; text-align: left;} th {background-color: #f2f2f2;}</style></head><body>'
        for triple in all_result['triple'].unique():
            html += f'<h3>Triple: {triple}</h3>'
            df = all_result[all_result['triple']==triple].copy()
            for idx, row in df.iterrows():
                url = row['url']
                results = row['Results']
                html += f'<h3>Reference: {url}</h3>'
                html += results.to_html(index=False)
        html += '</body></html>'
        return html
    html_result = dataframe_to_html(all_result)
    return html_result

if __name__ == '__main__':
    target_QID = 'Q245247'
    conn = sqlite3.connect('wikidata_claims_refs_parsed.db')
    query = f"SELECT * FROM claim_text WHERE entity_id = '{target_QID}'"
    claim_df = pd.read_sql_query(query, conn)
    query = f"SELECT * FROM html_text Where  entity_id = '{target_QID}'"
    reference_text_df = pd.read_sql_query(query, conn)
    verbalised_claims_df_final = verbalisation(claim_df)
    progress = gr.Progress(len(verbalised_claims_df_final))  # Create progress bar for Gradio
    def update_progress(curr_step, total_steps):
        progress((curr_step + 1) / total_steps)

    splited_sentences_from_html = setencesSpliter(verbalised_claims_df_final, reference_text_df, update_progress)

    BATCH_SIZE = 512
    N_TOP_SENTENCES = 5
    SCORE_THRESHOLD = 0.6
    evidence_df = evidenceSelection(splited_sentences_from_html, BATCH_SIZE, N_TOP_SENTENCES)
    result = textEntailment(evidence_df, SCORE_THRESHOLD)
    conn.commit()
    conn.close()
    display_df =TableMaking(verbalised_claims_df_final, result)