File size: 13,473 Bytes
49664ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import pandas as pd
import numpy as np
import sqlite3, torch, json, re, os, torch, itertools, nltk
from ast import literal_eval as leval
from tqdm.auto import tqdm
from utils.verbalisation_module import VerbModule
from utils.sentence_retrieval_module import SentenceRetrievalModule
from utils.textual_entailment_module import TextualEntailmentModule
from importlib import reload
from html.parser import HTMLParser
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
import gradio as gr
from bs4 import BeautifulSoup
from cleantext import clean
def verbalisation(claim_df):
verb_module = VerbModule()
triples = []
for _, row in claim_df.iterrows():
triple = {
'subject': row['entity_label'],
'predicate': row['property_label'],
'object': row['object_label']
}
triples.append(triple)
claim_df['verbalisation'] = verb_module.verbalise_triples(triples)
claim_df['verbalisation_unks_replaced'] = claim_df['verbalisation'].apply(verb_module.replace_unks_on_sentence)
claim_df['verbalisation_unks_replaced_then_dropped'] = claim_df['verbalisation'].apply(lambda x: verb_module.replace_unks_on_sentence(x, empty_after=True))
return claim_df
def setencesSpliter(verbalised_claims_df_final, reference_text_df, update_progress):
join_df = pd.merge(verbalised_claims_df_final, reference_text_df[['reference_id', 'url', 'html']], on='reference_id', how='left')
SS_df = join_df[['reference_id','url','verbalisation', 'html']].copy()
def clean_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
cleaned_text = clean(text,
fix_unicode=True,
to_ascii=True,
lower=False,
no_line_breaks=False,
no_urls=True,
no_emails=True,
no_phone_numbers=True,
no_numbers=False,
no_digits=False,
no_currency_symbols=True,
no_punct=False,
replace_with_url="",
replace_with_email="",
replace_with_phone_number="",
replace_with_number="",
replace_with_digit="",
replace_with_currency_symbol="")
return cleaned_text
def split_into_sentences(text):
sentences = nltk.sent_tokenize(text)
return sentences
def slide_sentences(sentences, window_size=2):
if len(sentences) < window_size:
return [" ".join(sentences)]
return [" ".join(sentences[i:i + window_size]) for i in range(len(sentences) - window_size + 1)]
SS_df['html2text'] = SS_df['html'].apply(clean_html)
SS_df['nlp_sentences'] = SS_df['html2text'].apply(split_into_sentences)
SS_df['nlp_sentences_slide_2'] = SS_df['nlp_sentences'].apply(slide_sentences)
return SS_df[['reference_id','verbalisation','url','nlp_sentences','nlp_sentences_slide_2']]
def evidenceSelection(splited_sentences_from_html, BATCH_SIZE, N_TOP_SENTENCES):
sr_module = SentenceRetrievalModule(max_len=512)
sentence_relevance_df = splited_sentences_from_html.copy()
sentence_relevance_df.rename(columns={'verbalisation': 'final_verbalisation'}, inplace=True)
def chunks(l, n):
n = max(1, n)
return [l[i:i + n] for i in range(0, len(l), n)]
def compute_scores(column_name):
all_outputs = []
for _, row in tqdm(sentence_relevance_df.iterrows(), total=sentence_relevance_df.shape[0]):
outputs = []
for batch in chunks(row[column_name], BATCH_SIZE):
batch_outputs = sr_module.score_sentence_pairs([(row['final_verbalisation'], sentence) for sentence in batch])
outputs += batch_outputs
all_outputs.append(outputs)
sentence_relevance_df[f'{column_name}_scores'] = pd.Series(all_outputs)
assert all(sentence_relevance_df.apply(lambda x: len(x[column_name]) == len(x[f'{column_name}_scores']), axis=1))
compute_scores('nlp_sentences')
compute_scores('nlp_sentences_slide_2')
def get_top_n_sentences(row, column_name, n):
sentences_with_scores = [{'sentence': t[0], 'score': t[1], 'sentence_id': f"{row.name}_{j}"} for j, t in enumerate(zip(row[column_name], row[f'{column_name}_scores']))]
return sorted(sentences_with_scores, key=lambda x: x['score'], reverse=True)[:n]
def filter_overlaps(sentences):
filtered = []
for evidence in sentences:
if ';' in evidence['sentence_id']:
start_id, end_id = evidence['sentence_id'].split(';')
if not any(start_id in e['sentence_id'].split(';') or end_id in e['sentence_id'].split(';') for e in filtered):
filtered.append(evidence)
else:
if not any(evidence['sentence_id'] in e['sentence_id'].split(';') for e in filtered):
filtered.append(evidence)
return filtered
def limit_sentence_length(sentence, max_length):
if len(sentence) > max_length:
return sentence[:max_length] + '...'
return sentence
nlp_sentences_TOP_N, nlp_sentences_slide_2_TOP_N, nlp_sentences_all_TOP_N = [], [], []
for _, row in tqdm(sentence_relevance_df.iterrows(), total=sentence_relevance_df.shape[0]):
top_n = get_top_n_sentences(row, 'nlp_sentences', N_TOP_SENTENCES)
top_n = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in top_n]
nlp_sentences_TOP_N.append(top_n)
top_n_slide_2 = get_top_n_sentences(row, 'nlp_sentences_slide_2', N_TOP_SENTENCES)
top_n_slide_2 = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in top_n_slide_2]
nlp_sentences_slide_2_TOP_N.append(top_n_slide_2)
all_sentences = top_n + top_n_slide_2
all_sentences_sorted = sorted(all_sentences, key=lambda x: x['score'], reverse=True)
filtered_sentences = filter_overlaps(all_sentences_sorted)
filtered_sentences = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in filtered_sentences]
nlp_sentences_all_TOP_N.append(filtered_sentences[:N_TOP_SENTENCES])
sentence_relevance_df['nlp_sentences_TOP_N'] = pd.Series(nlp_sentences_TOP_N)
sentence_relevance_df['nlp_sentences_slide_2_TOP_N'] = pd.Series(nlp_sentences_slide_2_TOP_N)
sentence_relevance_df['nlp_sentences_all_TOP_N'] = pd.Series(nlp_sentences_all_TOP_N)
return sentence_relevance_df
def textEntailment(evidence_df, SCORE_THRESHOLD):
textual_entailment_df = evidence_df.copy()
te_module = TextualEntailmentModule()
keys = ['TOP_N', 'slide_2_TOP_N', 'all_TOP_N']
te_columns = {f'evidence_TE_prob_{key}': [] for key in keys}
te_columns.update({f'evidence_TE_prob_weighted_{key}': [] for key in keys})
te_columns.update({f'evidence_TE_labels_{key}': [] for key in keys})
te_columns.update({f'claim_TE_prob_weighted_sum_{key}': [] for key in keys})
te_columns.update({f'claim_TE_label_weighted_sum_{key}': [] for key in keys})
te_columns.update({f'claim_TE_label_malon_{key}': [] for key in keys})
def process_row(row):
claim = row['final_verbalisation']
results = {}
for key in keys:
evidence = row[f'nlp_sentences_{key}']
evidence_size = len(evidence)
if evidence_size == 0:
results[key] = {
'evidence_TE_prob': [],
'evidence_TE_labels': [],
'evidence_TE_prob_weighted': [],
'claim_TE_prob_weighted_sum': [0, 0, 0],
'claim_TE_label_weighted_sum': 'NOT ENOUGH INFO',
'claim_TE_label_malon': 'NOT ENOUGH INFO'
}
continue
evidence_TE_prob = te_module.get_batch_scores(
claims=[claim] * evidence_size,
evidence=[e['sentence'] for e in evidence]
)
evidence_TE_labels = [te_module.get_label_from_scores(s) for s in evidence_TE_prob]
evidence_TE_prob_weighted = [
probs * ev['score'] for probs, ev in zip(evidence_TE_prob, evidence)
if ev['score'] > SCORE_THRESHOLD
]
claim_TE_prob_weighted_sum = np.sum(evidence_TE_prob_weighted, axis=0) if evidence_TE_prob_weighted else [0, 0, 0]
claim_TE_label_weighted_sum = te_module.get_label_from_scores(claim_TE_prob_weighted_sum) if evidence_TE_prob_weighted else 'NOT ENOUGH INFO'
claim_TE_label_malon = te_module.get_label_malon(
[probs for probs, ev in zip(evidence_TE_prob, evidence) if ev['score'] > SCORE_THRESHOLD]
)
results[key] = {
'evidence_TE_prob': evidence_TE_prob,
'evidence_TE_labels': evidence_TE_labels,
'evidence_TE_prob_weighted': evidence_TE_prob_weighted,
'claim_TE_prob_weighted_sum': claim_TE_prob_weighted_sum,
'claim_TE_label_weighted_sum': claim_TE_label_weighted_sum,
'claim_TE_label_malon': claim_TE_label_malon
}
return results
for i, row in tqdm(textual_entailment_df.iterrows(), total=textual_entailment_df.shape[0]):
try:
result_sets = process_row(row)
for key in keys:
for k, v in result_sets[key].items():
te_columns[f'{k}_{key}'].append(v)
except Exception as e:
print(f"Error processing row {i}: {e}")
print(row)
raise
for key in keys:
for col in ['evidence_TE_prob', 'evidence_TE_prob_weighted', 'evidence_TE_labels',
'claim_TE_prob_weighted_sum', 'claim_TE_label_weighted_sum', 'claim_TE_label_malon']:
textual_entailment_df[f'{col}_{key}'] = pd.Series(te_columns[f'{col}_{key}'])
return textual_entailment_df
def TableMaking(verbalised_claims_df_final, result):
verbalised_claims_df_final.set_index('reference_id', inplace=True)
result.set_index('reference_id', inplace=True)
results = pd.concat([verbalised_claims_df_final, result], axis=1)
results['triple'] = results[['entity_label', 'property_label', 'object_label']].apply(lambda x: ', '.join(x), axis=1)
all_result = pd.DataFrame()
for idx, row in results.iterrows():
aResult = pd.DataFrame(row["nlp_sentences_TOP_N"])[['sentence','score']]
aResult.rename(columns={'score': 'Relevance_score'}, inplace=True)
aResult = pd.concat([aResult, pd.DataFrame(row["evidence_TE_labels_all_TOP_N"], columns=['TextEntailment'])], axis=1)
aResult = pd.concat([aResult, pd.DataFrame(np.max(row["evidence_TE_prob_all_TOP_N"], axis=1), columns=['Entailment_score'])], axis=1)
aResult = aResult.reindex(columns=['sentence', 'TextEntailment', 'Entailment_score','Relevance_score'])
aBox = pd.DataFrame({'triple': [row["triple"]], 'url': row['url'],'Results': [aResult]})
all_result = pd.concat([all_result,aBox], axis=0)
def dataframe_to_html(all_result):
html = '<html><head><style>table {border-collapse: collapse; width: 100%;} th, td {border: 1px solid black; padding: 8px; text-align: left;} th {background-color: #f2f2f2;}</style></head><body>'
for triple in all_result['triple'].unique():
html += f'<h3>Triple: {triple}</h3>'
df = all_result[all_result['triple']==triple].copy()
for idx, row in df.iterrows():
url = row['url']
results = row['Results']
html += f'<h3>Reference: {url}</h3>'
html += results.to_html(index=False)
html += '</body></html>'
return html
html_result = dataframe_to_html(all_result)
return html_result
if __name__ == '__main__':
target_QID = 'Q245247'
conn = sqlite3.connect('wikidata_claims_refs_parsed.db')
query = f"SELECT * FROM claim_text WHERE entity_id = '{target_QID}'"
claim_df = pd.read_sql_query(query, conn)
query = f"SELECT * FROM html_text Where entity_id = '{target_QID}'"
reference_text_df = pd.read_sql_query(query, conn)
verbalised_claims_df_final = verbalisation(claim_df)
progress = gr.Progress(len(verbalised_claims_df_final)) # Create progress bar for Gradio
def update_progress(curr_step, total_steps):
progress((curr_step + 1) / total_steps)
splited_sentences_from_html = setencesSpliter(verbalised_claims_df_final, reference_text_df, update_progress)
BATCH_SIZE = 512
N_TOP_SENTENCES = 5
SCORE_THRESHOLD = 0.6
evidence_df = evidenceSelection(splited_sentences_from_html, BATCH_SIZE, N_TOP_SENTENCES)
result = textEntailment(evidence_df, SCORE_THRESHOLD)
conn.commit()
conn.close()
display_df =TableMaking(verbalised_claims_df_final, result)
|