File size: 27,024 Bytes
a5bbcdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
#!/usr/bin/env python
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import pdb
import numpy as np
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.utilities import rank_zero_info
from utils.callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils.utils_verbalisation_module import (
ROUGE_KEYS,
LegacySeq2SeqDataset,
Seq2SeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
flatten_list,
freeze_embeds,
freeze_params,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_json,
use_task_specific_params,
)
from utils.utils_graph2text import convert_text, eval_meteor, eval_bleu, eval_chrf, eval_meteor_test_webnlg, eval_chrf_test_webnlg
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from utils.lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
logger = logging.getLogger(__name__)
class SummarizationModule(BaseTransformer):
mode = "summarization"
loss_names = ["loss"]
metric_names = ROUGE_KEYS
default_val_metric = "rouge2"
def __init__(self, hparams, **kwargs):
if hparams.sortish_sampler and hparams.gpus > 1:
hparams.replace_sampler_ddp = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
if hparams.sortish_sampler:
raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")
super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
#use_task_specific_params(self.model, "summarization")
self.metrics_save_path = Path('base') / "metrics.json"
self.hparams_save_path = Path('base') / "hparams.pkl"
pickle_save(self.hparams, self.hparams_save_path)
self.step_count = -2
self.metrics = defaultdict(list)
self.model_type = self.config.model_type
self.vocab_size = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size
if 't5' in hparams.model_name_or_path:
self.model.config.prefix = 'translate Graph to English: '
self.dataset_kwargs: dict = dict(
data_dir=self.hparams.data_dir,
max_source_length=self.hparams.max_source_length,
prefix=self.model.config.prefix or "",
)
n_observations_per_split = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test_seen": self.hparams.n_test,
"test_unseen": self.hparams.n_test,
"test_both": self.hparams.n_test,
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.target_lens = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test_seen": self.hparams.test_max_target_length,
"test_unseen": self.hparams.test_max_target_length,
"test_both": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test_both"], f"target_lens: {self.target_lens}"
if self.hparams.freeze_embeds:
freeze_embeds(self.model)
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder())
assert_all_frozen(self.model.get_encoder())
self.num_workers = hparams.num_workers
self.decoder_start_token_id = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
self.model.config.decoder_start_token_id = self.decoder_start_token_id
self.dataset_class = (
Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
)
self.already_saved_batch = False
self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
self.eval_max_length = self.hparams.eval_max_gen_length
else:
self.eval_max_length = self.model.config.max_length
self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def save_readable_batch(self, batch: Dict[str, torch.Tensor]) -> Dict[str, List[str]]:
"""A debugging utility"""
readable_batch = {
k: self.tokenizer.batch_decode(v.tolist()) if "mask" not in k else v.shape for k, v in batch.items()
}
save_json(readable_batch, Path(self.output_dir) / "text_batch.json")
tb = {}
for k, v in batch.items():
tb[k] = v.tolist()
save_json(tb, Path(self.output_dir) / "tok_batch.json")
self.already_saved_batch = True
return readable_batch
def forward(self, input_ids, **kwargs):
return self.model(input_ids, **kwargs)
def ids_to_clean_text(self, generated_ids: List[int]):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return lmap(str.strip, gen_text)
def _step(self, batch: dict) -> Tuple:
pad_token_id = self.tokenizer.pad_token_id
src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
if isinstance(self.model, T5ForConditionalGeneration):
tgt_ids = batch["labels"]
decoder_input_ids = self.model._shift_right(tgt_ids)
else:
#decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
y = batch["labels"]
decoder_input_ids = y[:, :-1].contiguous()
tgt_ids = y[:, 1:].clone()
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
batch["decoder_input_ids"] = decoder_input_ids
self.save_readable_batch(batch)
outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
lm_logits = outputs[0]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
assert lm_logits.shape[-1] == self.vocab_size
loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
else:
lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
loss, nll_loss = label_smoothed_nll_loss(
lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
)
return (loss,)
@property
def pad(self) -> int:
return self.tokenizer.pad_token_id
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)
logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
# tokens per batch
logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
logs["bs"] = batch["input_ids"].shape[0]
logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def validation_step(self, batch, batch_idx) -> Dict:
return self._generative_step(batch)
def validation_epoch_end(self, outputs, prefix="val") -> Dict:
self.step_count += 1
val_outputs_folder = "val_outputs"
os.system("mkdir -p " + os.path.join(self.hparams.output_dir, val_outputs_folder))
if prefix == "val":
output_test_predictions_file = os.path.join(self.hparams.output_dir, val_outputs_folder, "validation_predictions_" +
str(self.step_count) + ".txt")
output_test_targets_file = os.path.join(self.hparams.output_dir, val_outputs_folder, "validation_targets_" +
str(self.step_count) + ".txt")
# write predictions and targets for later rouge evaluation.
with open(output_test_predictions_file, "w") as p_writer, open(output_test_targets_file, "w") as t_writer:
for output_batch in outputs:
p_writer.writelines(convert_text(s) + "\n" for s in output_batch["preds"])
t_writer.writelines(convert_text(s) + "\n" for s in output_batch["target"])
p_writer.close()
t_writer.close()
bleu_info = eval_bleu(self.hparams.data_dir, output_test_predictions_file, 'val')
rank_zero_info("%s bleu_info: %s", self.step_count, bleu_info)
if bleu_info == -1:
bleu_info = float(bleu_info)
else:
bleu_info = float(bleu_info.split(",")[0].split("BLEU = ")[1])
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
generative_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
generative_metrics['bleu'] = bleu_info
metric_val = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[
self.val_metric]
)
metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
generative_metrics.update({k: v.item() for k, v in losses.items()})
losses.update(generative_metrics)
all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
all_metrics["step_count"] = self.step_count
self.metrics[prefix].append(all_metrics) # callback writes this to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {
"bleu": bleu_info,
"log": all_metrics,
"preds": preds,
f"{prefix}_loss": loss,
f"{prefix}_{self.val_metric}": metric_tensor,
}
else:
data_logs = {}
for output in outputs:
dataset_idx = output[0]['dataloader_idx']
if dataset_idx == 0:
dataset_name = 'test_both'
elif dataset_idx == 1:
dataset_name = 'test_seen'
else:
dataset_name = 'test_unseen'
if output[0]['bleu'] == -1:
bleu_info = float(output[0]['bleu'])
else:
bleu_info = float(output[0]['bleu'].split(",")[0].split("BLEU = ")[1])
losses = {k: torch.stack([x[k] for x in output]).mean() for k in self.loss_names}
loss = losses["loss"]
generative_metrics = {
k: np.array([x[k] for x in output]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
generative_metrics['bleu'] = bleu_info
metric_val = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[
self.val_metric]
)
metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
generative_metrics.update({k: v.item() for k, v in losses.items()})
losses.update(generative_metrics)
all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
all_metrics["step_count"] = self.step_count
self.metrics[prefix].append(all_metrics) # callback writes this to self.metrics_save_path
preds = flatten_list([x["preds"] for x in output])
data_logs.update({
"log" + "_" + dataset_name: all_metrics,
"preds" + "_" + dataset_name: preds,
f"{prefix}_loss" + "_" + dataset_name: loss,
f"{prefix}_{self.val_metric}" + "_" + dataset_name: metric_tensor,
})
return data_logs
#######
def calc_generative_metrics(self, preds, target) -> Dict:
return calculate_rouge(preds, target)
def _generative_step(self, batch: dict, batch_idx=None, dataloader_idx=None) -> dict:
t0 = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
generated_ids = self.model.generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
use_cache=True,
decoder_start_token_id=self.decoder_start_token_id,
num_beams=self.eval_beams,
max_length=self.eval_max_length,
length_penalty=1.0
)
gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
preds: List[str] = self.ids_to_clean_text(generated_ids)
target: List[str] = self.ids_to_clean_text(batch["labels"])
loss_tensors = self._step(batch)
base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
rouge: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
if dataloader_idx is not None:
base_metrics.update(batch_idx=batch_idx, dataloader_idx=dataloader_idx)
return base_metrics
def test_step(self, batch, batch_idx, dataloader_idx):
return self._generative_step(batch, batch_idx, dataloader_idx)
def test_epoch_end(self, outputs_all_testsets):
val_outputs_folder = "val_outputs"
os.system("mkdir -p " + os.path.join(self.hparams.output_dir, val_outputs_folder))
for outputs in outputs_all_testsets:
dataset_idx = outputs[0]['dataloader_idx']
if dataset_idx == 0:
file_name = "test_both_predictions.txt"
file_name_tgt = "test_both_targets.txt"
dataset_name = 'test_both'
elif dataset_idx == 1:
file_name = "test_seen_predictions.txt"
file_name_tgt = "test_seen_targets.txt"
dataset_name = 'test_seen'
else:
file_name = "test_unseen_predictions.txt"
file_name_tgt = "test_unseen_targets.txt"
dataset_name = 'test_unseen'
file_name += '.debug'
file_name_tgt += '.debug'
output_test_predictions_file = os.path.join(self.hparams.output_dir, val_outputs_folder, file_name)
output_test_targets_file = os.path.join(self.hparams.output_dir, val_outputs_folder, file_name_tgt)
# write predictions and targets for later rouge evaluation.
with open(output_test_predictions_file, "w") as p_writer, open(output_test_targets_file, "w") as t_writer:
for output_batch in outputs:
p_writer.writelines(convert_text(s) + "\n" for s in output_batch["preds"])
t_writer.writelines(convert_text(s) + "\n" for s in output_batch["target"])
p_writer.close()
t_writer.close()
bleu_info = eval_bleu(self.hparams.data_dir, output_test_predictions_file, dataset_name)
meteor_info = eval_meteor_test_webnlg(self.hparams.data_dir, output_test_predictions_file, dataset_name)
chrf_info = eval_chrf_test_webnlg(self.hparams.data_dir, output_test_predictions_file, dataset_name)
rank_zero_info(" %s - bleu_info: %s", dataset_name, bleu_info)
rank_zero_info(" %s - meteor_info: %s", dataset_name, meteor_info)
rank_zero_info(" %s - chrf_info: %s", dataset_name, chrf_info)
outputs[0]['bleu'] = bleu_info
return self.validation_epoch_end(outputs_all_testsets, prefix="test")
def get_dataset(self, type_path) -> Seq2SeqDataset:
n_obs = self.n_obs[type_path]
max_target_length = self.target_lens[type_path]
dataset = self.dataset_class(
self.tokenizer,
type_path=type_path,
n_obs=n_obs,
max_target_length=max_target_length,
**self.dataset_kwargs,
)
return dataset
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
dataset = self.get_dataset(type_path)
if self.hparams.sortish_sampler and type_path != "test":
sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=False,
num_workers=self.num_workers,
sampler=sampler,
)
elif self.hparams.max_tokens_per_batch is not None and type_path != "test":
batch_sampler = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
)
return DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=dataset.collate_fn,
# shuffle=False,
num_workers=self.num_workers,
# batch_size=None,
)
else:
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=shuffle,
num_workers=self.num_workers,
sampler=None,
)
def train_dataloader(self) -> DataLoader:
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
return dataloader
def val_dataloader(self) -> DataLoader:
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
def test_dataloader(self) -> List[DataLoader]:
test_dataloader = self.get_dataloader("test_both", batch_size=self.hparams.eval_batch_size)
test_seen_dataloader = self.get_dataloader("test_seen", batch_size=self.hparams.eval_batch_size)
test_unseen_dataloader = self.get_dataloader("test_unseen", batch_size=self.hparams.eval_batch_size)
return [test_dataloader, test_seen_dataloader, test_unseen_dataloader]
@staticmethod
def add_model_specific_args(parser, root_dir):
BaseTransformer.add_model_specific_args(parser, root_dir)
add_generic_args(parser, root_dir)
parser.add_argument(
"--max_source_length",
default=1024,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--max_target_length",
default=56,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--val_max_target_length",
default=142, # these defaults are optimized for CNNDM. For xsum, see README.md.
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--test_max_target_length",
default=142,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--freeze_encoder", action="store_true")
parser.add_argument("--freeze_embeds", action="store_true")
parser.add_argument("--sortish_sampler", action="store_true", default=False)
parser.add_argument("--max_tokens_per_batch", type=int, default=None)
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument(
"--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
)
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
parser.add_argument("--src_lang", type=str, default="", required=False)
parser.add_argument("--tgt_lang", type=str, default="", required=False)
parser.add_argument("--eval_beams", type=int, default=None, required=False)
parser.add_argument("--checkpoint", type=str, default=None, required=False)
parser.add_argument(
"--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
)
parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
parser.add_argument(
"--early_stopping_patience",
type=int,
default=-1,
required=False,
help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
)
return parser
class TranslationModule(SummarizationModule):
mode = "translation"
loss_names = ["loss"]
metric_names = ["bleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.dataset_kwargs["src_lang"] = hparams.src_lang
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
class Graph2TextModule(SummarizationModule):
mode = "graph2text"
loss_names = ["loss"]
metric_names = ["sacrebleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
if type(hparams) == dict:
hparams = argparse.Namespace(**hparams)
print(f'Graph2Text hparams are: {hparams}')
super().__init__(hparams, **kwargs)
self.hparams.update(vars(hparams))
rank_zero_info("parameters %s", hparams)
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
def main(args, model=None) -> SummarizationModule:
Path(args.output_dir).mkdir(exist_ok=True)
if len(os.listdir(args.output_dir)) > 3 and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if model is None:
if "summarization" in args.task:
model: SummarizationModule = SummarizationModule(args)
elif "translation" in args.task:
model: SummarizationModule = TranslationModule(args)
else:
model: SummarizationModule = Graph2TextModule(args)
dataset = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith("/tmp")
or str(args.output_dir).startswith("/var")
):
logger = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
project = os.environ.get("WANDB_PROJECT", dataset)
logger = WandbLogger(name=model.output_dir.name, project=project)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
if args.early_stopping_patience >= 0:
es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
else:
es_callback = False
lower_is_better = args.val_metric == "loss"
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(
args.output_dir, model.val_metric, args.save_top_k, lower_is_better
),
early_stopping_callback=es_callback,
logger=logger,
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:
return model
model.hparams.test_checkpoint = ""
if not args.checkpoint:
checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
else:
checkpoints = [args.checkpoint]
if checkpoints:
model.hparams.test_checkpoint = checkpoints[-1]
trainer.resume_from_checkpoint = checkpoints[-1]
if args.do_predict and not args.do_train:
checkpoint = checkpoints[-1]
print(checkpoint)
#trainer.test(ckpt_path=checkpoints[-1])
trainer.test(model, ckpt_path=checkpoint)
return model
trainer.logger.log_hyperparams(model.hparams)
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
main(args)
|