|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BERT model.""" |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import copy |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
import tarfile |
|
import tempfile |
|
import sys |
|
from io import open |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from utils.file_utils import cached_path |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
PRETRAINED_MODEL_ARCHIVE_MAP = { |
|
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", |
|
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", |
|
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", |
|
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", |
|
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", |
|
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", |
|
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", |
|
} |
|
CONFIG_NAME = 'bert_config.json' |
|
WEIGHTS_NAME = 'pytorch_model.bin' |
|
TF_WEIGHTS_NAME = 'model.ckpt' |
|
|
|
def load_tf_weights_in_bert(model, tf_checkpoint_path): |
|
""" Load tf checkpoints in a pytorch model |
|
""" |
|
try: |
|
import re |
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions.") |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
print("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
print("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split('/') |
|
|
|
|
|
if any(n in ["adam_v", "adam_m"] for n in name): |
|
print("Skipping {}".format("/".join(name))) |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r'[A-Za-z]+_\d+', m_name): |
|
l = re.split(r'_(\d+)', m_name) |
|
else: |
|
l = [m_name] |
|
if l[0] == 'kernel' or l[0] == 'gamma': |
|
pointer = getattr(pointer, 'weight') |
|
elif l[0] == 'output_bias' or l[0] == 'beta': |
|
pointer = getattr(pointer, 'bias') |
|
elif l[0] == 'output_weights': |
|
pointer = getattr(pointer, 'weight') |
|
else: |
|
pointer = getattr(pointer, l[0]) |
|
if len(l) >= 2: |
|
num = int(l[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == '_embeddings': |
|
pointer = getattr(pointer, 'weight') |
|
elif m_name == 'kernel': |
|
array = np.transpose(array) |
|
try: |
|
assert pointer.shape == array.shape |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
print("Initialize PyTorch weight {}".format(name)) |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
def gelu(x): |
|
"""Implementation of the gelu activation function. |
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): |
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) |
|
Also see https://arxiv.org/abs/1606.08415 |
|
""" |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
def swish(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} |
|
|
|
|
|
class BertConfig(object): |
|
"""Configuration class to store the configuration of a `BertModel`. |
|
""" |
|
def __init__(self, |
|
vocab_size_or_config_json_file, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02): |
|
"""Constructs BertConfig. |
|
|
|
Args: |
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. |
|
hidden_size: Size of the encoder layers and the pooler layer. |
|
num_hidden_layers: Number of hidden layers in the Transformer encoder. |
|
num_attention_heads: Number of attention heads for each attention layer in |
|
the Transformer encoder. |
|
intermediate_size: The size of the "intermediate" (i.e., feed-forward) |
|
layer in the Transformer encoder. |
|
hidden_act: The non-linear activation function (function or string) in the |
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. |
|
hidden_dropout_prob: The dropout probabilitiy for all fully connected |
|
layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob: The dropout ratio for the attention |
|
probabilities. |
|
max_position_embeddings: The maximum sequence length that this model might |
|
ever be used with. Typically set this to something large just in case |
|
(e.g., 512 or 1024 or 2048). |
|
type_vocab_size: The vocabulary size of the `token_type_ids` passed into |
|
`BertModel`. |
|
initializer_range: The sttdev of the truncated_normal_initializer for |
|
initializing all weight matrices. |
|
""" |
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 |
|
and isinstance(vocab_size_or_config_json_file, unicode)): |
|
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: |
|
json_config = json.loads(reader.read()) |
|
for key, value in json_config.items(): |
|
self.__dict__[key] = value |
|
elif isinstance(vocab_size_or_config_json_file, int): |
|
self.vocab_size = vocab_size_or_config_json_file |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
else: |
|
raise ValueError("First argument must be either a vocabulary size (int)" |
|
"or the path to a pretrained model config file (str)") |
|
|
|
@classmethod |
|
def from_dict(cls, json_object): |
|
"""Constructs a `BertConfig` from a Python dictionary of parameters.""" |
|
config = BertConfig(vocab_size_or_config_json_file=-1) |
|
for key, value in json_object.items(): |
|
config.__dict__[key] = value |
|
return config |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file): |
|
"""Constructs a `BertConfig` from a json file of parameters.""" |
|
with open(json_file, "r", encoding='utf-8') as reader: |
|
text = reader.read() |
|
return cls.from_dict(json.loads(text)) |
|
|
|
def __repr__(self): |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self): |
|
"""Serializes this instance to a Python dictionary.""" |
|
output = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self): |
|
"""Serializes this instance to a JSON string.""" |
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |
|
|
|
try: |
|
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm |
|
except ImportError: |
|
print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") |
|
class BertLayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-12): |
|
"""Construct a layernorm module in the TF style (epsilon inside the square root). |
|
""" |
|
super(BertLayerNorm, self).__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.bias = nn.Parameter(torch.zeros(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, x): |
|
u = x.mean(-1, keepdim=True) |
|
s = (x - u).pow(2).mean(-1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon) |
|
return self.weight * x + self.bias |
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings. |
|
""" |
|
def __init__(self, config): |
|
super(BertEmbeddings, self).__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, input_ids, token_type_ids=None): |
|
seq_length = input_ids.size(1) |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros_like(input_ids) |
|
|
|
words_embeddings = self.word_embeddings(input_ids) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = words_embeddings + position_embeddings + token_type_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfAttention, self).__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) |
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, hidden_states, attention_mask): |
|
mixed_query_layer = self.query(hidden_states) |
|
mixed_key_layer = self.key(hidden_states) |
|
mixed_value_layer = self.value(hidden_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
return context_layer |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfOutput, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertAttention, self).__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
|
|
def forward(self, input_tensor, attention_mask): |
|
self_output = self.self(input_tensor, attention_mask) |
|
attention_output = self.output(self_output, input_tensor) |
|
return attention_output |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super(BertIntermediate, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertOutput, self).__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config): |
|
super(BertLayer, self).__init__() |
|
self.attention = BertAttention(config) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward(self, hidden_states, attention_mask): |
|
attention_output = self.attention(hidden_states, attention_mask) |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super(BertEncoder, self).__init__() |
|
layer = BertLayer(config) |
|
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): |
|
all_encoder_layers = [] |
|
for layer_module in self.layer: |
|
hidden_states = layer_module(hidden_states, attention_mask) |
|
if output_all_encoded_layers: |
|
all_encoder_layers.append(hidden_states) |
|
if not output_all_encoded_layers: |
|
all_encoder_layers.append(hidden_states) |
|
return all_encoder_layers |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super(BertPooler, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super(BertPredictionHeadTransform, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config, bert_model_embedding_weights): |
|
super(BertLMPredictionHead, self).__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), |
|
bert_model_embedding_weights.size(0), |
|
bias=False) |
|
self.decoder.weight = bert_model_embedding_weights |
|
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) + self.bias |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config, bert_model_embedding_weights): |
|
super(BertOnlyMLMHead, self).__init__() |
|
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertOnlyNSPHead(nn.Module): |
|
def __init__(self, config): |
|
super(BertOnlyNSPHead, self).__init__() |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, pooled_output): |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return seq_relationship_score |
|
|
|
|
|
class BertPreTrainingHeads(nn.Module): |
|
def __init__(self, config, bert_model_embedding_weights): |
|
super(BertPreTrainingHeads, self).__init__() |
|
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class BertPreTrainedModel(nn.Module): |
|
""" An abstract class to handle weights initialization and |
|
a simple interface for dowloading and loading pretrained models. |
|
""" |
|
def __init__(self, config, *inputs, **kwargs): |
|
super(BertPreTrainedModel, self).__init__() |
|
if not isinstance(config, BertConfig): |
|
raise ValueError( |
|
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. " |
|
"To create a model from a Google pretrained model use " |
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( |
|
self.__class__.__name__, self.__class__.__name__ |
|
)) |
|
self.config = config |
|
|
|
def init_bert_weights(self, module): |
|
""" Initialize the weights. |
|
""" |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, BertLayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, |
|
from_tf=False, *inputs, **kwargs): |
|
""" |
|
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. |
|
Download and cache the pre-trained model file if needed. |
|
|
|
Params: |
|
pretrained_model_name_or_path: either: |
|
- a str with the name of a pre-trained model to load selected in the list of: |
|
. `bert-base-uncased` |
|
. `bert-large-uncased` |
|
. `bert-base-cased` |
|
. `bert-large-cased` |
|
. `bert-base-multilingual-uncased` |
|
. `bert-base-multilingual-cased` |
|
. `bert-base-chinese` |
|
- a path or url to a pretrained model archive containing: |
|
. `bert_config.json` a configuration file for the model |
|
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance |
|
- a path or url to a pretrained model archive containing: |
|
. `bert_config.json` a configuration file for the model |
|
. `model.chkpt` a TensorFlow checkpoint |
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint |
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached. |
|
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models |
|
*inputs, **kwargs: additional input for the specific Bert class |
|
(ex: num_labels for BertForSequenceClassification) |
|
""" |
|
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: |
|
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
else: |
|
archive_file = pretrained_model_name_or_path |
|
|
|
try: |
|
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) |
|
except EnvironmentError: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find any file " |
|
"associated to this path or url.".format( |
|
pretrained_model_name_or_path, |
|
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), |
|
archive_file)) |
|
return None |
|
if resolved_archive_file == archive_file: |
|
logger.info("loading archive file {}".format(archive_file)) |
|
else: |
|
logger.info("loading archive file {} from cache at {}".format( |
|
archive_file, resolved_archive_file)) |
|
tempdir = None |
|
if os.path.isdir(resolved_archive_file) or from_tf: |
|
serialization_dir = resolved_archive_file |
|
else: |
|
|
|
tempdir = tempfile.mkdtemp() |
|
logger.info("extracting archive file {} to temp dir {}".format( |
|
resolved_archive_file, tempdir)) |
|
with tarfile.open(resolved_archive_file, 'r:gz') as archive: |
|
archive.extractall(tempdir) |
|
serialization_dir = tempdir |
|
|
|
config_file = os.path.join(serialization_dir, CONFIG_NAME) |
|
config = BertConfig.from_json_file(config_file) |
|
logger.info("Model config {}".format(config)) |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
if state_dict is None and not from_tf: |
|
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) |
|
state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None) |
|
if tempdir: |
|
|
|
shutil.rmtree(tempdir) |
|
if from_tf: |
|
|
|
weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME) |
|
return load_tf_weights_in_bert(model, weights_path) |
|
|
|
old_keys = [] |
|
new_keys = [] |
|
for key in state_dict.keys(): |
|
new_key = None |
|
if 'gamma' in key: |
|
new_key = key.replace('gamma', 'weight') |
|
if 'beta' in key: |
|
new_key = key.replace('beta', 'bias') |
|
if new_key: |
|
old_keys.append(key) |
|
new_keys.append(new_key) |
|
for old_key, new_key in zip(old_keys, new_keys): |
|
state_dict[new_key] = state_dict.pop(old_key) |
|
|
|
missing_keys = [] |
|
unexpected_keys = [] |
|
error_msgs = [] |
|
|
|
metadata = getattr(state_dict, '_metadata', None) |
|
state_dict = state_dict.copy() |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
def load(module, prefix=''): |
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) |
|
module._load_from_state_dict( |
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, prefix + name + '.') |
|
start_prefix = '' |
|
if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): |
|
start_prefix = 'bert.' |
|
load(model, prefix=start_prefix) |
|
if len(missing_keys) > 0: |
|
logger.info("Weights of {} not initialized from pretrained model: {}".format( |
|
model.__class__.__name__, missing_keys)) |
|
if len(unexpected_keys) > 0: |
|
logger.info("Weights from pretrained model not used in {}: {}".format( |
|
model.__class__.__name__, unexpected_keys)) |
|
if len(error_msgs) > 0: |
|
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( |
|
model.__class__.__name__, "\n\t".join(error_msgs))) |
|
return model |
|
|
|
|
|
class BertModel(BertPreTrainedModel): |
|
"""BERT model ("Bidirectional Embedding Representations from a Transformer"). |
|
|
|
Params: |
|
config: a BertConfig class instance with the configuration to build a new model |
|
|
|
Inputs: |
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] |
|
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts |
|
`extract_features.py`, `run_classifier.py` and `run_squad.py`) |
|
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token |
|
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to |
|
a `sentence B` token (see BERT paper for more details). |
|
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices |
|
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max |
|
input sequence length in the current batch. It's the mask that we typically use for attention when |
|
a batch has varying length sentences. |
|
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. |
|
|
|
Outputs: Tuple of (encoded_layers, pooled_output) |
|
`encoded_layers`: controled by `output_all_encoded_layers` argument: |
|
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end |
|
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each |
|
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], |
|
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding |
|
to the last attention block of shape [batch_size, sequence_length, hidden_size], |
|
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a |
|
classifier pretrained on top of the hidden state associated to the first character of the |
|
input (`CLS`) to train on the Next-Sentence task (see BERT's paper). |
|
|
|
Example usage: |
|
```python |
|
# Already been converted into WordPiece token ids |
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) |
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) |
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) |
|
|
|
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, |
|
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) |
|
|
|
model = modeling.BertModel(config=config) |
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) |
|
``` |
|
""" |
|
def __init__(self, config): |
|
super(BertModel, self).__init__(config) |
|
self.embeddings = BertEmbeddings(config) |
|
self.encoder = BertEncoder(config) |
|
self.pooler = BertPooler(config) |
|
self.apply(self.init_bert_weights) |
|
|
|
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros_like(input_ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
|
|
embedding_output = self.embeddings(input_ids, token_type_ids) |
|
encoded_layers = self.encoder(embedding_output, |
|
extended_attention_mask, |
|
output_all_encoded_layers=output_all_encoded_layers) |
|
sequence_output = encoded_layers[-1] |
|
pooled_output = self.pooler(sequence_output) |
|
if not output_all_encoded_layers: |
|
encoded_layers = encoded_layers[-1] |
|
return encoded_layers, pooled_output |
|
|
|
|
|
|
|
|
|
|
|
class BertForSequenceEncoder(BertPreTrainedModel): |
|
"""BERT model for classification. |
|
This module is composed of the BERT model with a linear layer on top of |
|
the pooled output. |
|
Params: |
|
`config`: a BertConfig class instance with the configuration to build a new model. |
|
`num_labels`: the number of classes for the classifier. Default = 2. |
|
Inputs: |
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] |
|
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts |
|
`extract_features.py`, `run_classifier.py` and `run_squad.py`) |
|
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token |
|
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to |
|
a `sentence B` token (see BERT paper for more details). |
|
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices |
|
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max |
|
input sequence length in the current batch. It's the mask that we typically use for attention when |
|
a batch has varying length sentences. |
|
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size] |
|
with indices selected in [0, ..., num_labels]. |
|
Outputs: |
|
if `labels` is not `None`: |
|
Outputs the CrossEntropy classification loss of the output with the labels. |
|
if `labels` is `None`: |
|
Outputs the classification logits of shape [batch_size, num_labels]. |
|
Example usage: |
|
```python |
|
# Already been converted into WordPiece token ids |
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) |
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) |
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) |
|
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, |
|
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) |
|
num_labels = 2 |
|
model = BertForSequenceClassification(config, num_labels) |
|
logits = model(input_ids, token_type_ids, input_mask) |
|
``` |
|
""" |
|
def __init__(self, config): |
|
super(BertForSequenceEncoder, self).__init__(config) |
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.apply(self.init_bert_weights) |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids): |
|
output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) |
|
output = self.dropout(output) |
|
pooled_output = self.dropout(pooled_output) |
|
return output, pooled_output |
|
|
|
|
|
|