Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import gradio as gr | |
import os | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Aseg煤rate de que tu token de Hugging Face est谩 cargado como una variable de entorno | |
hf_token = os.environ.get("token") | |
if hf_token is not None: | |
from huggingface_hub import HfFolder | |
HfFolder.save_token(hf_token) | |
# Configuraci贸n inicial | |
tokenizer = AutoTokenizer.from_pretrained("somosnlp/chaterapia_model") | |
model_base = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it").to(device) | |
model_base.resize_token_embeddings(len(tokenizer)) | |
model_with_adapter = PeftModel.from_pretrained(model_base, "somosnlp/chaterapia_model").to(device) | |
CHAT_TEMPLATE= """{% for message in messages %} | |
{% if message['role'] == 'user' %} | |
{{'<user> ' + message['content'].strip() + ' </user>' }} | |
{% elif message['role'] == 'system' %} | |
{{'<system>\\n' + message['content'].strip() + '\\n</system>\\n\\n' }} | |
{% elif message['role'] == 'assistant' %} | |
{{ message['content'].strip() + ' </assistant>' + eos_token }} | |
{% elif message['role'] == 'input' %} | |
{{'<input> ' + message['content'] + ' </input>' }} | |
{% endif %} | |
{% endfor %}""" # Aseg煤rate de usar tu CHAT_TEMPLATE aqu铆 | |
tokenizer.chat_template = CHAT_TEMPLATE | |
chat_history = [] # Historial de chat global | |
chatbot_text = [] | |
def generate_response(user_input): | |
global chat_history | |
# Agregar input del usuario al historial | |
chat_history.append({"content": user_input, "role": "user"}) | |
# Preparaci贸n del input para el modelo | |
user_input = tokenizer.apply_chat_template(chat_history, tokenize=False) | |
input_tokens = tokenizer(user_input, return_tensors='pt', padding=True, truncation=True, max_length=1024).to(device) | |
# Generaci贸n de la respuesta del modelo | |
output_tokens = model_with_adapter.generate(**input_tokens, max_length=1024, pad_token_id=tokenizer.eos_token_id, top_k=50, do_sample=True, top_p=0.95, temperature=0.7) | |
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
# Extracci贸n de la respuesta generada | |
last_us = generated_text.rfind("</user>") + len("</user>") | |
last_as = generated_text.rfind("</assistant>") | |
generated_text = generated_text[last_us:last_as].strip() | |
# Agregar la respuesta del bot al historial | |
chat_history.append({"content": generated_text, "role": "assistant"}) | |
return generated_text | |
def respond(message): | |
global chatbot_text | |
if message: # Verificar si el mensaje no est谩 vac铆o | |
bot_response = generate_response(message) | |
chatbot_text.append((message, bot_response)) | |
return chatbot_text | |
return [("", "")] | |
def clear_chat_and_history(): | |
global chat_history | |
global chatbot_text | |
chat_history.clear()# Vaciar el historial de chat | |
chatbot_text.clear() | |
return "", [] | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
# Usar un Button regular en lugar de ClearButton para tener control sobre la funci贸n que se ejecuta | |
with gr.Row(): | |
msg = gr.Textbox(label="Tu mensaje", placeholder="Escribe aqu铆...", lines=1) | |
send_btn = gr.Button("Enviar") | |
clear_btn = gr.Button("Limpiar Chat") | |
# Acci贸n al presionar el bot贸n Enviar | |
send_btn.click(fn=respond, inputs=msg, outputs=chatbot) | |
clear_btn.click(fn=clear_chat_and_history, inputs=None, outputs=[msg, chatbot]) | |
demo.launch() |