File size: 1,857 Bytes
c82eb8a
 
 
 
 
6cd98fb
 
c82eb8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd98fb
c82eb8a
6cd98fb
c82eb8a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from transformers import AutoTokenizer, AutoModelForCausalLM

import cpu_ai

models = [
    "abacaj/Replit-v2-CodeInstruct-3B-ggml",
    "marella/gpt-2-ggml",
    "WizardLM/WizardCoder-Python-34B-V1.0",
    "WizardLM/WizardCoder-15B-V1.0",
    "WizardLM/WizardCoder-Python-7B-V1.0",
    "WizardLM/WizardCoder-3B-V1.0",
    "WizardLM/WizardCoder-1B-V1.0",
]


def run_general_model(model_name, prompt, max_tokens, temperature=0.6):
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
    return run_model(model, tokenizer, prompt, max_tokens, temperature)


def run_model(model, tokenizer, prompt, max_tokens, temperature=0.6):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    tokens = model.generate(
        **inputs,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=2,
    )
    output = tokenizer.decode(tokens[0], skip_special_tokens=True)
    return output


def cleanup_response(generated_text):
    # TODO:
    # - remove comments (or convert them to python comments)
    # - test if code is valid (e.g. opening brackets have closing brackets etc.)
    # - wrap code in async if not yet wrapped

    code = generated_text
    return code


def generate_code(prompt, model_index, max_tokens, temperature=0.6):
    model_full_name = models[model_index]
    if model_index == 0:
        output = cpu_ai.generate_code(prompt, model_full_name, max_tokens, temperature)
    elif model_index == 1:
        output = cpu_ai.generate_code(prompt, model_full_name, max_tokens, temperature)
    else:
        output = run_general_model(model_full_name, prompt, max_tokens, temperature)

    generated_code = cleanup_response(output)
    return generated_code