TextToGame / ai.py
Jumper-Clown's picture
only run from local files when running locally
6cd98fb
from transformers import AutoTokenizer, AutoModelForCausalLM
import cpu_ai
models = [
"abacaj/Replit-v2-CodeInstruct-3B-ggml",
"marella/gpt-2-ggml",
"WizardLM/WizardCoder-Python-34B-V1.0",
"WizardLM/WizardCoder-15B-V1.0",
"WizardLM/WizardCoder-Python-7B-V1.0",
"WizardLM/WizardCoder-3B-V1.0",
"WizardLM/WizardCoder-1B-V1.0",
]
def run_general_model(model_name, prompt, max_tokens, temperature=0.6):
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
return run_model(model, tokenizer, prompt, max_tokens, temperature)
def run_model(model, tokenizer, prompt, max_tokens, temperature=0.6):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=2,
)
output = tokenizer.decode(tokens[0], skip_special_tokens=True)
return output
def cleanup_response(generated_text):
# TODO:
# - remove comments (or convert them to python comments)
# - test if code is valid (e.g. opening brackets have closing brackets etc.)
# - wrap code in async if not yet wrapped
code = generated_text
return code
def generate_code(prompt, model_index, max_tokens, temperature=0.6):
model_full_name = models[model_index]
if model_index == 0:
output = cpu_ai.generate_code(prompt, model_full_name, max_tokens, temperature)
elif model_index == 1:
output = cpu_ai.generate_code(prompt, model_full_name, max_tokens, temperature)
else:
output = run_general_model(model_full_name, prompt, max_tokens, temperature)
generated_code = cleanup_response(output)
return generated_code