from transformers import AutoTokenizer, AutoModelForCausalLM import cpu_ai models = [ "abacaj/Replit-v2-CodeInstruct-3B-ggml", "marella/gpt-2-ggml", "WizardLM/WizardCoder-Python-34B-V1.0", "WizardLM/WizardCoder-15B-V1.0", "WizardLM/WizardCoder-Python-7B-V1.0", "WizardLM/WizardCoder-3B-V1.0", "WizardLM/WizardCoder-1B-V1.0", ] def run_general_model(model_name, prompt, max_tokens, temperature=0.6): tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) return run_model(model, tokenizer, prompt, max_tokens, temperature) def run_model(model, tokenizer, prompt, max_tokens, temperature=0.6): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, eos_token_id=2, ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) return output def cleanup_response(generated_text): # TODO: # - remove comments (or convert them to python comments) # - test if code is valid (e.g. opening brackets have closing brackets etc.) # - wrap code in async if not yet wrapped code = generated_text return code def generate_code(prompt, model_index, max_tokens, temperature=0.6): model_full_name = models[model_index] if model_index == 0: output = cpu_ai.generate_code(prompt, model_full_name, max_tokens, temperature) elif model_index == 1: output = cpu_ai.generate_code(prompt, model_full_name, max_tokens, temperature) else: output = run_general_model(model_full_name, prompt, max_tokens, temperature) generated_code = cleanup_response(output) return generated_code