File size: 7,620 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple

from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin

    from ...hparams import DataArguments
    from ..template import Template


logger = get_logger(__name__)


def _encode_supervised_example(
    prompt: Sequence[Dict[str, str]],
    response: Sequence[Dict[str, str]],
    system: Optional[str],
    tools: Optional[str],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    data_args: "DataArguments",
) -> Tuple[List[int], List[int]]:
    if processor is not None and not hasattr(processor, "image_seq_length"):  # llava-like models
        prompt[0]["content"] = template.image_token + prompt[0]["content"]

    messages = prompt + response
    input_ids, labels = [], []

    if processor is not None and hasattr(processor, "image_seq_length"):  # paligemma models
        image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
        input_ids += [image_token_id] * getattr(processor, "image_seq_length")
        labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")

    encoded_pairs = template.encode_multiturn(
        tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
    )
    for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
        if data_args.train_on_prompt:
            source_mask = source_ids
        elif turn_idx != 0 and template.efficient_eos:
            source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
        else:
            source_mask = [IGNORE_INDEX] * len(source_ids)

        input_ids += source_ids + target_ids
        labels += source_mask + target_ids

    if template.efficient_eos:
        input_ids += [tokenizer.eos_token_id]
        labels += [tokenizer.eos_token_id]

    return input_ids, labels


def preprocess_supervised_dataset(
    examples: Dict[str, List[Any]],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
    # for multiturn examples, we only mask the prompt part in each prompt-response pair.
    model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
    if processor is not None:
        model_inputs["pixel_values"] = []
        if hasattr(processor, "image_seq_length"):  # paligemma models
            model_inputs["token_type_ids"] = []

    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
            logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
            continue

        input_ids, labels = _encode_supervised_example(
            prompt=examples["prompt"][i],
            response=examples["response"][i],
            system=examples["system"][i],
            tools=examples["tools"][i],
            template=template,
            tokenizer=tokenizer,
            processor=processor,
            data_args=data_args,
        )
        model_inputs["input_ids"].append(input_ids)
        model_inputs["attention_mask"].append([1] * len(input_ids))
        model_inputs["labels"].append(labels)
        if processor is not None:
            model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
            if hasattr(processor, "image_seq_length"):  # paligemma models
                model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))

    return model_inputs


def preprocess_packed_supervised_dataset(
    examples: Dict[str, List[Any]],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
    # build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
    # and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
    valid_num = 0
    batch_input_ids, batch_labels = [], []
    lengths = []
    length2indexes = defaultdict(list)
    for i in range(len(examples["prompt"])):
        if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
            logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
            continue

        input_ids, labels = _encode_supervised_example(
            prompt=examples["prompt"][i],
            response=examples["response"][i],
            system=examples["system"][i],
            tools=examples["tools"][i],
            template=template,
            tokenizer=tokenizer,
            processor=None,
            data_args=data_args,
        )
        length = len(input_ids)
        if length > data_args.cutoff_len:
            logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len))
        else:
            lengths.append(length)
            length2indexes[length].append(valid_num)
            batch_input_ids.append(input_ids)
            batch_labels.append(labels)
            valid_num += 1

    model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
    knapsacks = greedy_knapsack(lengths, data_args.cutoff_len)
    for knapsack in knapsacks:
        packed_input_ids, packed_labels = [], []
        for length in knapsack:
            index = length2indexes[length].pop()
            packed_input_ids += batch_input_ids[index]
            packed_labels += batch_labels[index]

        if len(packed_input_ids) < data_args.cutoff_len:
            pad_length = data_args.cutoff_len - len(packed_input_ids)
            packed_input_ids += [tokenizer.pad_token_id] * pad_length
            packed_labels += [IGNORE_INDEX] * pad_length

        if len(packed_input_ids) != data_args.cutoff_len:
            raise ValueError("The length of packed example should be identical to the cutoff length.")

        model_inputs["input_ids"].append(packed_input_ids)
        model_inputs["attention_mask"].append([1] * data_args.cutoff_len)
        model_inputs["labels"].append(packed_labels)

    return model_inputs


def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
    valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
    print("input_ids:\n{}".format(example["input_ids"]))
    print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
    print("label_ids:\n{}".format(example["labels"]))
    print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))