File size: 5,990 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from typing import TYPE_CHECKING, Dict, Generator, List, Optional, Sequence, Tuple

from numpy.typing import NDArray

from ..chat import ChatModel
from ..data import Role
from ..extras.constants import PEFT_METHODS
from ..extras.misc import torch_gc
from ..extras.packages import is_gradio_available
from .common import get_save_dir
from .locales import ALERTS


if TYPE_CHECKING:
    from ..chat import BaseEngine
    from .manager import Manager


if is_gradio_available():
    import gradio as gr


class WebChatModel(ChatModel):
    def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        self.engine: Optional["BaseEngine"] = None

        if not lazy_init:  # read arguments from command line
            super().__init__()

        if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"):  # load demo model
            model_name_or_path = os.environ.get("DEMO_MODEL")
            template = os.environ.get("DEMO_TEMPLATE")
            infer_backend = os.environ.get("DEMO_BACKEND", "huggingface")
            super().__init__(
                dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
            )

    @property
    def loaded(self) -> bool:
        return self.engine is not None

    def load_model(self, data) -> Generator[str, None, None]:
        get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path")
        error = ""
        if self.loaded:
            error = ALERTS["err_exists"][lang]
        elif not model_name:
            error = ALERTS["err_no_model"][lang]
        elif not model_path:
            error = ALERTS["err_no_path"][lang]
        elif self.demo_mode:
            error = ALERTS["err_demo"][lang]

        if error:
            gr.Warning(error)
            yield error
            return

        yield ALERTS["info_loading"][lang]
        args = dict(
            model_name_or_path=model_path,
            finetuning_type=finetuning_type,
            quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
            template=get("top.template"),
            flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
            use_unsloth=(get("top.booster") == "unsloth"),
            visual_inputs=get("top.visual_inputs"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
            infer_backend=get("infer.infer_backend"),
        )

        if checkpoint_path:
            if finetuning_type in PEFT_METHODS:  # list
                args["adapter_name_or_path"] = ",".join(
                    [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
                )
            else:  # str
                args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)

        super().__init__(args)
        yield ALERTS["info_loaded"][lang]

    def unload_model(self, data) -> Generator[str, None, None]:
        lang = data[self.manager.get_elem_by_id("top.lang")]

        if self.demo_mode:
            gr.Warning(ALERTS["err_demo"][lang])
            yield ALERTS["err_demo"][lang]
            return

        yield ALERTS["info_unloading"][lang]
        self.engine = None
        torch_gc()
        yield ALERTS["info_unloaded"][lang]

    def append(
        self,
        chatbot: List[List[Optional[str]]],
        messages: Sequence[Dict[str, str]],
        role: str,
        query: str,
    ) -> Tuple[List[List[Optional[str]]], List[Dict[str, str]], str]:
        return chatbot + [[query, None]], messages + [{"role": role, "content": query}], ""

    def stream(
        self,
        chatbot: List[List[Optional[str]]],
        messages: Sequence[Dict[str, str]],
        system: str,
        tools: str,
        image: Optional[NDArray],
        max_new_tokens: int,
        top_p: float,
        temperature: float,
    ) -> Generator[Tuple[List[List[Optional[str]]], List[Dict[str, str]]], None, None]:
        chatbot[-1][1] = ""
        response = ""
        for new_text in self.stream_chat(
            messages, system, tools, image, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
        ):
            response += new_text
            if tools:
                result = self.engine.template.format_tools.extract(response)
            else:
                result = response

            if isinstance(result, tuple):
                name, arguments = result
                arguments = json.loads(arguments)
                tool_call = json.dumps({"name": name, "arguments": arguments}, ensure_ascii=False)
                output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_call}]
                bot_text = "```json\n" + tool_call + "\n```"
            else:
                output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}]
                bot_text = result

            chatbot[-1][1] = bot_text
            yield chatbot, output_messages