Spaces:
Running
Running
import json | |
import os | |
from typing import List | |
import datasets | |
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co") | |
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data." | |
_CITATION = """\ | |
@misc{UltraChat, | |
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen}, | |
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data}, | |
year = {2023}, | |
publisher = {GitHub}, | |
journal = {GitHub repository}, | |
howpublished = {\\url{https://github.com/thunlp/ultrachat}}, | |
} | |
""" | |
_HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT) | |
_LICENSE = "cc-by-nc-4.0" | |
_BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT) | |
class UltraChat(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("0.0.0") | |
def _info(self): | |
features = datasets.Features( | |
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager): | |
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})] | |
def _generate_examples(self, filepaths: List[str]): | |
for filepath in filepaths: | |
with open(filepath, "r", encoding="utf-8") as f: | |
for row in f: | |
try: | |
data = json.loads(row) | |
except Exception: | |
continue | |
key: int = data["id"] | |
content: List[str] = data["data"] | |
if len(content) % 2 == 1: | |
content.pop(-1) | |
if len(content) < 2: | |
continue | |
conversations = [ | |
{"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content)) | |
] | |
yield key, {"conversations": conversations} | |