Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is based on the HuggingFace's PEFT library. | |
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import TYPE_CHECKING | |
import fire | |
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel | |
def quantize_loftq( | |
model_name_or_path: str, | |
output_dir: str, | |
loftq_bits: int = 4, | |
loftq_iter: int = 4, | |
lora_alpha: int = None, | |
lora_rank: int = 16, | |
lora_dropout: float = 0, | |
lora_target: str = "q_proj,v_proj", | |
save_safetensors: bool = True, | |
): | |
r""" | |
Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ) | |
Usage: python loftq_init.py --model_name_or_path path_to_model --output_dir output_dir | |
""" | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto") | |
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter) | |
lora_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
inference_mode=True, | |
r=lora_rank, | |
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2, | |
lora_dropout=lora_dropout, | |
target_modules=[name.strip() for name in lora_target.split(",")], | |
init_lora_weights="loftq", | |
loftq_config=loftq_config, | |
) | |
# Init LoftQ model | |
print("Initializing LoftQ weights, it may be take several minutes, wait patiently.") | |
peft_model = get_peft_model(model, lora_config) | |
loftq_dir = os.path.join(output_dir, "loftq_init") | |
# Save LoftQ model | |
setattr(peft_model.peft_config["default"], "base_model_name_or_path", output_dir) | |
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply loftq again | |
peft_model.save_pretrained(loftq_dir, safe_serialization=save_safetensors) | |
print("Adapter weights saved in {}".format(loftq_dir)) | |
# Save base model | |
base_model: "PreTrainedModel" = peft_model.unload() | |
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors) | |
tokenizer.save_pretrained(output_dir) | |
print("Model weights saved in {}".format(output_dir)) | |
print("- Fine-tune this model with:") | |
print("model_name_or_path: {}".format(output_dir)) | |
print("adapter_name_or_path: {}".format(loftq_dir)) | |
print("finetuning_type: lora") | |
print("quantization_bit: {}".format(loftq_bits)) | |
if __name__ == "__main__": | |
fire.Fire(quantize_loftq) | |