Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# This code is inspired by the Dan's test library. | |
# https://github.com/hendrycks/test/blob/master/evaluate_flan.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# MIT License | |
# | |
# Copyright (c) 2020 Dan Hendrycks | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import inspect | |
import json | |
import os | |
from typing import Any, Dict, List, Optional | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from tqdm import tqdm, trange | |
from transformers.utils import cached_file | |
from ..data import get_template_and_fix_tokenizer | |
from ..extras.constants import CHOICES, SUBJECTS | |
from ..hparams import get_eval_args | |
from ..model import load_model, load_tokenizer | |
from .template import get_eval_template | |
class Evaluator: | |
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None: | |
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args) | |
self.tokenizer = load_tokenizer(self.model_args)["tokenizer"] | |
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2 | |
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template) | |
self.model = load_model(self.tokenizer, self.model_args, finetuning_args) | |
self.eval_template = get_eval_template(self.eval_args.lang) | |
self.choice_inputs = [self.tokenizer.encode(ch, add_special_tokens=False)[-1] for ch in CHOICES] | |
def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]: | |
logits = self.model(**batch_input).logits | |
lengths = torch.sum(batch_input["attention_mask"], dim=-1) | |
word_probs = torch.stack([logits[i, lengths[i] - 1] for i in range(len(lengths))], dim=0) | |
choice_probs = torch.nn.functional.softmax(word_probs[:, self.choice_inputs], dim=-1).detach() | |
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)] | |
def eval(self) -> None: | |
mapping = cached_file( | |
path_or_repo_id=os.path.join(self.eval_args.task_dir, self.eval_args.task), | |
filename="mapping.json", | |
cache_dir=self.model_args.cache_dir, | |
token=self.model_args.hf_hub_token, | |
) | |
with open(mapping, "r", encoding="utf-8") as f: | |
categorys: Dict[str, Dict[str, str]] = json.load(f) | |
category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS} | |
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0) | |
results = {} | |
for subject in pbar: | |
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0 | |
kwargs = {"trust_remote_code": True} | |
else: | |
kwargs = {} | |
dataset = load_dataset( | |
path=os.path.join(self.eval_args.task_dir, self.eval_args.task), | |
name=subject, | |
cache_dir=self.model_args.cache_dir, | |
download_mode=self.eval_args.download_mode, | |
token=self.model_args.hf_hub_token, | |
**kwargs, | |
) | |
pbar.set_postfix_str(categorys[subject]["name"]) | |
inputs, outputs, labels = [], [], [] | |
for i in trange(len(dataset[self.data_args.split]), desc="Formatting batches", position=1, leave=False): | |
support_set = ( | |
dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"])))) | |
) | |
messages = self.eval_template.format_example( | |
target_data=dataset[self.data_args.split][i], | |
support_set=support_set, | |
subject_name=categorys[subject]["name"], | |
) | |
input_ids, _ = self.template.encode_oneturn(tokenizer=self.tokenizer, messages=messages) | |
inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)}) | |
labels.append(messages[-1]["content"]) | |
for i in trange( | |
0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False | |
): | |
batch_input = self.tokenizer.pad( | |
inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt" | |
).to(self.model.device) | |
preds = self.batch_inference(batch_input) | |
outputs += preds | |
corrects = np.array(outputs) == np.array(labels) | |
category_name = categorys[subject]["category"] | |
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0) | |
category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0) | |
results[subject] = {str(i): outputs[i] for i in range(len(outputs))} | |
pbar.close() | |
self._save_results(category_corrects, results) | |
def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None: | |
score_info = "\n".join( | |
[ | |
"{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct)) | |
for category_name, category_correct in category_corrects.items() | |
if len(category_correct) | |
] | |
) | |
print(score_info) | |
if self.eval_args.save_dir is not None: | |
os.makedirs(self.eval_args.save_dir, exist_ok=False) | |
with open(os.path.join(self.eval_args.save_dir, "results.json"), "w", encoding="utf-8", newline="\n") as f: | |
json.dump(results, f, indent=2) | |
with open(os.path.join(self.eval_args.save_dir, "results.log"), "w", encoding="utf-8", newline="\n") as f: | |
f.write(score_info) | |
def run_eval() -> None: | |
Evaluator().eval() | |