Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import asdict, dataclass, field | |
from typing import Any, Dict, Optional | |
class GeneratingArguments: | |
r""" | |
Arguments pertaining to specify the decoding parameters. | |
""" | |
do_sample: bool = field( | |
default=True, | |
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}, | |
) | |
temperature: float = field( | |
default=0.95, | |
metadata={"help": "The value used to modulate the next token probabilities."}, | |
) | |
top_p: float = field( | |
default=0.7, | |
metadata={ | |
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept." | |
}, | |
) | |
top_k: int = field( | |
default=50, | |
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}, | |
) | |
num_beams: int = field( | |
default=1, | |
metadata={"help": "Number of beams for beam search. 1 means no beam search."}, | |
) | |
max_length: int = field( | |
default=1024, | |
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."}, | |
) | |
max_new_tokens: int = field( | |
default=1024, | |
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}, | |
) | |
repetition_penalty: float = field( | |
default=1.0, | |
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}, | |
) | |
length_penalty: float = field( | |
default=1.0, | |
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}, | |
) | |
default_system: Optional[str] = field( | |
default=None, | |
metadata={"help": "Default system message to use in chat completion."}, | |
) | |
def to_dict(self) -> Dict[str, Any]: | |
args = asdict(self) | |
if args.get("max_new_tokens", -1) > 0: | |
args.pop("max_length", None) | |
else: | |
args.pop("max_new_tokens", None) | |
return args | |