Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from collections import defaultdict
from typing import Any, Dict, Optional, Tuple
from yaml import safe_dump, safe_load
from ..extras.constants import (
CHECKPOINT_NAMES,
DATA_CONFIG,
DEFAULT_TEMPLATE,
PEFT_METHODS,
STAGES_USE_PAIR_DATA,
SUPPORTED_MODELS,
TRAINING_STAGES,
VISION_MODELS,
DownloadSource,
)
from ..extras.logging import get_logger
from ..extras.misc import use_modelscope
from ..extras.packages import is_gradio_available
if is_gradio_available():
import gradio as gr
logger = get_logger(__name__)
DEFAULT_CACHE_DIR = "cache"
DEFAULT_CONFIG_DIR = "config"
DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user_config.yaml"
def get_save_dir(*paths: str) -> os.PathLike:
r"""
Gets the path to saved model checkpoints.
"""
if os.path.sep in paths[-1]:
logger.warning("Found complex path, some features may be not available.")
return paths[-1]
paths = (path.replace(" ", "").strip() for path in paths)
return os.path.join(DEFAULT_SAVE_DIR, *paths)
def get_config_path() -> os.PathLike:
r"""
Gets the path to user config.
"""
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG)
def load_config() -> Dict[str, Any]:
r"""
Loads user config if exists.
"""
try:
with open(get_config_path(), "r", encoding="utf-8") as f:
return safe_load(f)
except Exception:
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None:
r"""
Saves user config.
"""
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
user_config = load_config()
user_config["lang"] = lang or user_config["lang"]
if model_name:
user_config["last_model"] = model_name
if model_name and model_path:
user_config["path_dict"][model_name] = model_path
with open(get_config_path(), "w", encoding="utf-8") as f:
safe_dump(user_config, f)
def get_model_path(model_name: str) -> str:
r"""
Gets the model path according to the model name.
"""
user_config = load_config()
path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "")
if (
use_modelscope()
and path_dict.get(DownloadSource.MODELSCOPE)
and model_path == path_dict.get(DownloadSource.DEFAULT)
): # replace path
model_path = path_dict.get(DownloadSource.MODELSCOPE)
return model_path
def get_prefix(model_name: str) -> str:
r"""
Gets the prefix of the model name to obtain the model family.
"""
return model_name.split("-")[0]
def get_model_info(model_name: str) -> Tuple[str, str, bool]:
r"""
Gets the necessary information of this model.
Returns:
model_path (str)
template (str)
visual (bool)
"""
return get_model_path(model_name), get_template(model_name), get_visual(model_name)
def get_template(model_name: str) -> str:
r"""
Gets the template name if the model is a chat model.
"""
if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE:
return DEFAULT_TEMPLATE[get_prefix(model_name)]
return "default"
def get_visual(model_name: str) -> bool:
r"""
Judges if the model is a vision language model.
"""
return get_prefix(model_name) in VISION_MODELS
def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown":
r"""
Lists all available checkpoints.
"""
checkpoints = []
if model_name:
save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir):
for checkpoint in os.listdir(save_dir):
if os.path.isdir(os.path.join(save_dir, checkpoint)) and any(
os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES
):
checkpoints.append(checkpoint)
if finetuning_type in PEFT_METHODS:
return gr.Dropdown(value=[], choices=checkpoints, multiselect=True)
else:
return gr.Dropdown(value=None, choices=checkpoints, multiselect=False)
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
r"""
Loads dataset_info.json.
"""
if dataset_dir == "ONLINE":
logger.info("dataset_dir is ONLINE, using online dataset.")
return {}
try:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
return json.load(f)
except Exception as err:
logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err)))
return {}
def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown":
r"""
Lists all available datasets in the dataset dir for the training stage.
"""
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
return gr.Dropdown(choices=datasets)