Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from copy import deepcopy | |
from subprocess import Popen, TimeoutExpired | |
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional | |
from transformers.trainer import TRAINING_ARGS_NAME | |
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES | |
from ..extras.misc import is_gpu_or_npu_available, torch_gc | |
from ..extras.packages import is_gradio_available | |
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, get_save_dir, load_config | |
from .locales import ALERTS, LOCALES | |
from .utils import abort_leaf_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd | |
if is_gradio_available(): | |
import gradio as gr | |
if TYPE_CHECKING: | |
from gradio.components import Component | |
from .manager import Manager | |
class Runner: | |
def __init__(self, manager: "Manager", demo_mode: bool = False) -> None: | |
self.manager = manager | |
self.demo_mode = demo_mode | |
""" Resume """ | |
self.trainer: Optional["Popen"] = None | |
self.do_train = True | |
self.running_data: Dict["Component", Any] = None | |
""" State """ | |
self.aborted = False | |
self.running = False | |
def set_abort(self) -> None: | |
self.aborted = True | |
if self.trainer is not None: | |
abort_leaf_process(self.trainer.pid) | |
def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str: | |
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] | |
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path") | |
dataset = get("train.dataset") if do_train else get("eval.dataset") | |
if self.running: | |
return ALERTS["err_conflict"][lang] | |
if not model_name: | |
return ALERTS["err_no_model"][lang] | |
if not model_path: | |
return ALERTS["err_no_path"][lang] | |
if not dataset: | |
return ALERTS["err_no_dataset"][lang] | |
if not from_preview and self.demo_mode: | |
return ALERTS["err_demo"][lang] | |
if do_train: | |
if not get("train.output_dir"): | |
return ALERTS["err_no_output_dir"][lang] | |
stage = TRAINING_STAGES[get("train.training_stage")] | |
if stage == "ppo" and not get("train.reward_model"): | |
return ALERTS["err_no_reward_model"][lang] | |
else: | |
if not get("eval.output_dir"): | |
return ALERTS["err_no_output_dir"][lang] | |
if not from_preview and not is_gpu_or_npu_available(): | |
gr.Warning(ALERTS["warn_no_cuda"][lang]) | |
return "" | |
def _finalize(self, lang: str, finish_info: str) -> str: | |
finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info | |
self.trainer = None | |
self.aborted = False | |
self.running = False | |
self.running_data = None | |
torch_gc() | |
return finish_info | |
def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]: | |
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] | |
model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type") | |
user_config = load_config() | |
args = dict( | |
stage=TRAINING_STAGES[get("train.training_stage")], | |
do_train=True, | |
model_name_or_path=get("top.model_path"), | |
cache_dir=user_config.get("cache_dir", None), | |
preprocessing_num_workers=16, | |
finetuning_type=finetuning_type, | |
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, | |
template=get("top.template"), | |
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, | |
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto", | |
use_unsloth=(get("top.booster") == "unsloth"), | |
visual_inputs=get("top.visual_inputs"), | |
dataset_dir=get("train.dataset_dir"), | |
dataset=",".join(get("train.dataset")), | |
cutoff_len=get("train.cutoff_len"), | |
learning_rate=float(get("train.learning_rate")), | |
num_train_epochs=float(get("train.num_train_epochs")), | |
max_samples=int(get("train.max_samples")), | |
per_device_train_batch_size=get("train.batch_size"), | |
gradient_accumulation_steps=get("train.gradient_accumulation_steps"), | |
lr_scheduler_type=get("train.lr_scheduler_type"), | |
max_grad_norm=float(get("train.max_grad_norm")), | |
logging_steps=get("train.logging_steps"), | |
save_steps=get("train.save_steps"), | |
warmup_steps=get("train.warmup_steps"), | |
neftune_noise_alpha=get("train.neftune_alpha") or None, | |
optim=get("train.optim"), | |
resize_vocab=get("train.resize_vocab"), | |
packing=get("train.packing"), | |
upcast_layernorm=get("train.upcast_layernorm"), | |
use_llama_pro=get("train.use_llama_pro"), | |
shift_attn=get("train.shift_attn"), | |
report_to="all" if get("train.report_to") else "none", | |
use_galore=get("train.use_galore"), | |
use_badam=get("train.use_badam"), | |
output_dir=get_save_dir(model_name, finetuning_type, get("train.output_dir")), | |
fp16=(get("train.compute_type") == "fp16"), | |
bf16=(get("train.compute_type") == "bf16"), | |
pure_bf16=(get("train.compute_type") == "pure_bf16"), | |
plot_loss=True, | |
ddp_timeout=180000000, | |
include_num_input_tokens_seen=True, | |
) | |
# checkpoints | |
if get("top.checkpoint_path"): | |
if finetuning_type in PEFT_METHODS: # list | |
args["adapter_name_or_path"] = ",".join( | |
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")] | |
) | |
else: # str | |
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path")) | |
# freeze config | |
if args["finetuning_type"] == "freeze": | |
args["freeze_trainable_layers"] = get("train.freeze_trainable_layers") | |
args["freeze_trainable_modules"] = get("train.freeze_trainable_modules") | |
args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None | |
# lora config | |
if args["finetuning_type"] == "lora": | |
args["lora_rank"] = get("train.lora_rank") | |
args["lora_alpha"] = get("train.lora_alpha") | |
args["lora_dropout"] = get("train.lora_dropout") | |
args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None | |
args["create_new_adapter"] = get("train.create_new_adapter") | |
args["use_rslora"] = get("train.use_rslora") | |
args["use_dora"] = get("train.use_dora") | |
args["pissa_init"] = get("train.use_pissa") | |
args["pissa_convert"] = get("train.use_pissa") | |
args["lora_target"] = get("train.lora_target") or "all" | |
args["additional_target"] = get("train.additional_target") or None | |
if args["use_llama_pro"]: | |
args["num_layer_trainable"] = get("train.num_layer_trainable") | |
# rlhf config | |
if args["stage"] == "ppo": | |
if finetuning_type in PEFT_METHODS: | |
args["reward_model"] = ",".join( | |
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("train.reward_model")] | |
) | |
else: | |
args["reward_model"] = get_save_dir(model_name, finetuning_type, get("train.reward_model")) | |
args["reward_model_type"] = "lora" if finetuning_type == "lora" else "full" | |
args["ppo_score_norm"] = get("train.ppo_score_norm") | |
args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards") | |
args["top_k"] = 0 | |
args["top_p"] = 0.9 | |
elif args["stage"] in ["dpo", "kto"]: | |
args["pref_beta"] = get("train.pref_beta") | |
args["pref_ftx"] = get("train.pref_ftx") | |
args["pref_loss"] = get("train.pref_loss") | |
# galore config | |
if args["use_galore"]: | |
args["galore_rank"] = get("train.galore_rank") | |
args["galore_update_interval"] = get("train.galore_update_interval") | |
args["galore_scale"] = get("train.galore_scale") | |
args["galore_target"] = get("train.galore_target") | |
# badam config | |
if args["use_badam"]: | |
args["badam_mode"] = get("train.badam_mode") | |
args["badam_switch_mode"] = get("train.badam_switch_mode") | |
args["badam_switch_interval"] = get("train.badam_switch_interval") | |
args["badam_update_ratio"] = get("train.badam_update_ratio") | |
# eval config | |
if get("train.val_size") > 1e-6 and args["stage"] != "ppo": | |
args["val_size"] = get("train.val_size") | |
args["eval_strategy"] = "steps" | |
args["eval_steps"] = args["save_steps"] | |
args["per_device_eval_batch_size"] = args["per_device_train_batch_size"] | |
# ds config | |
if get("train.ds_stage") != "none": | |
ds_stage = get("train.ds_stage") | |
ds_offload = "offload_" if get("train.ds_offload") else "" | |
args["deepspeed"] = os.path.join(DEFAULT_CACHE_DIR, "ds_z{}_{}config.json".format(ds_stage, ds_offload)) | |
return args | |
def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]: | |
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] | |
model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type") | |
user_config = load_config() | |
args = dict( | |
stage="sft", | |
model_name_or_path=get("top.model_path"), | |
cache_dir=user_config.get("cache_dir", None), | |
preprocessing_num_workers=16, | |
finetuning_type=finetuning_type, | |
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, | |
template=get("top.template"), | |
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, | |
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto", | |
use_unsloth=(get("top.booster") == "unsloth"), | |
visual_inputs=get("top.visual_inputs"), | |
dataset_dir=get("eval.dataset_dir"), | |
dataset=",".join(get("eval.dataset")), | |
cutoff_len=get("eval.cutoff_len"), | |
max_samples=int(get("eval.max_samples")), | |
per_device_eval_batch_size=get("eval.batch_size"), | |
predict_with_generate=True, | |
max_new_tokens=get("eval.max_new_tokens"), | |
top_p=get("eval.top_p"), | |
temperature=get("eval.temperature"), | |
output_dir=get_save_dir(model_name, finetuning_type, get("eval.output_dir")), | |
) | |
if get("eval.predict"): | |
args["do_predict"] = True | |
else: | |
args["do_eval"] = True | |
if get("top.checkpoint_path"): | |
if finetuning_type in PEFT_METHODS: # list | |
args["adapter_name_or_path"] = ",".join( | |
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")] | |
) | |
else: # str | |
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path")) | |
return args | |
def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", str], None, None]: | |
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval")) | |
error = self._initialize(data, do_train, from_preview=True) | |
if error: | |
gr.Warning(error) | |
yield {output_box: error} | |
else: | |
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) | |
yield {output_box: gen_cmd(args)} | |
def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", Any], None, None]: | |
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval")) | |
error = self._initialize(data, do_train, from_preview=False) | |
if error: | |
gr.Warning(error) | |
yield {output_box: error} | |
else: | |
self.do_train, self.running_data = do_train, data | |
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) | |
os.makedirs(args["output_dir"], exist_ok=True) | |
save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._form_config_dict(data)) | |
env = deepcopy(os.environ) | |
env["LLAMABOARD_ENABLED"] = "1" | |
if args.get("deepspeed", None) is not None: | |
env["FORCE_TORCHRUN"] = "1" | |
self.trainer = Popen("llamafactory-cli train {}".format(save_cmd(args)), env=env, shell=True) | |
yield from self.monitor() | |
def _form_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]: | |
config_dict = {} | |
skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path", "train.device_count"] | |
for elem, value in data.items(): | |
elem_id = self.manager.get_id_by_elem(elem) | |
if elem_id not in skip_ids: | |
config_dict[elem_id] = value | |
return config_dict | |
def preview_train(self, data): | |
yield from self._preview(data, do_train=True) | |
def preview_eval(self, data): | |
yield from self._preview(data, do_train=False) | |
def run_train(self, data): | |
yield from self._launch(data, do_train=True) | |
def run_eval(self, data): | |
yield from self._launch(data, do_train=False) | |
def monitor(self): | |
self.aborted = False | |
self.running = True | |
get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)] | |
lang, model_name, finetuning_type = get("top.lang"), get("top.model_name"), get("top.finetuning_type") | |
output_dir = get("{}.output_dir".format("train" if self.do_train else "eval")) | |
output_path = get_save_dir(model_name, finetuning_type, output_dir) | |
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval")) | |
progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval")) | |
loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None | |
while self.trainer is not None: | |
if self.aborted: | |
yield { | |
output_box: ALERTS["info_aborting"][lang], | |
progress_bar: gr.Slider(visible=False), | |
} | |
else: | |
running_log, running_progress, running_loss = get_trainer_info(output_path, self.do_train) | |
return_dict = { | |
output_box: running_log, | |
progress_bar: running_progress, | |
} | |
if running_loss is not None: | |
return_dict[loss_viewer] = running_loss | |
yield return_dict | |
try: | |
self.trainer.wait(2) | |
self.trainer = None | |
except TimeoutExpired: | |
continue | |
if self.do_train: | |
if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)): | |
finish_info = ALERTS["info_finished"][lang] | |
else: | |
finish_info = ALERTS["err_failed"][lang] | |
else: | |
if os.path.exists(os.path.join(output_path, "all_results.json")): | |
finish_info = get_eval_results(os.path.join(output_path, "all_results.json")) | |
else: | |
finish_info = ALERTS["err_failed"][lang] | |
return_dict = { | |
output_box: self._finalize(lang, finish_info), | |
progress_bar: gr.Slider(visible=False), | |
} | |
yield return_dict | |
def save_args(self, data): | |
output_box = self.manager.get_elem_by_id("train.output_box") | |
error = self._initialize(data, do_train=True, from_preview=True) | |
if error: | |
gr.Warning(error) | |
return {output_box: error} | |
lang = data[self.manager.get_elem_by_id("top.lang")] | |
config_path = data[self.manager.get_elem_by_id("train.config_path")] | |
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True) | |
save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path) | |
save_args(save_path, self._form_config_dict(data)) | |
return {output_box: ALERTS["info_config_saved"][lang] + save_path} | |
def load_args(self, lang: str, config_path: str): | |
output_box = self.manager.get_elem_by_id("train.output_box") | |
config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path)) | |
if config_dict is None: | |
gr.Warning(ALERTS["err_config_not_found"][lang]) | |
return {output_box: ALERTS["err_config_not_found"][lang]} | |
output_dict: Dict["Component", Any] = {output_box: ALERTS["info_config_loaded"][lang]} | |
for elem_id, value in config_dict.items(): | |
output_dict[self.manager.get_elem_by_id(elem_id)] = value | |
return output_dict | |
def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str): | |
output_box = self.manager.get_elem_by_id("train.output_box") | |
output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]} | |
if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)): | |
gr.Warning(ALERTS["warn_output_dir_exists"][lang]) | |
output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang] | |
output_dir = get_save_dir(model_name, finetuning_type, output_dir) | |
config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG)) # load llamaboard config | |
for elem_id, value in config_dict.items(): | |
output_dict[self.manager.get_elem_by_id(elem_id)] = value | |
return output_dict | |