# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union from ..extras.logging import get_logger from .data_utils import Role, infer_max_len from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter if TYPE_CHECKING: from transformers import PreTrainedTokenizer from .formatter import SLOTS, Formatter logger = get_logger(__name__) @dataclass class Template: format_user: "Formatter" format_assistant: "Formatter" format_system: "Formatter" format_function: "Formatter" format_observation: "Formatter" format_tools: "Formatter" format_separator: "Formatter" default_system: str stop_words: List[str] image_token: str efficient_eos: bool replace_eos: bool force_system: bool def encode_oneturn( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: Optional[str] = None, tools: Optional[str] = None, cutoff_len: int = 1_000_000, reserved_label_len: int = 1, ) -> Tuple[List[int], List[int]]: r""" Returns a single pair of token ids representing prompt and response respectively. """ encoded_pairs = self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) prompt_ids = [] for query_ids, resp_ids in encoded_pairs[:-1]: prompt_ids += query_ids + resp_ids prompt_ids = prompt_ids + encoded_pairs[-1][0] answer_ids = encoded_pairs[-1][1] return prompt_ids, answer_ids def encode_multiturn( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: Optional[str] = None, tools: Optional[str] = None, cutoff_len: int = 1_000_000, reserved_label_len: int = 1, ) -> Sequence[Tuple[List[int], List[int]]]: r""" Returns multiple pairs of token ids representing prompts and responses respectively. """ return self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) def _encode( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: Optional[str], tools: Optional[str], cutoff_len: int, reserved_label_len: int, ) -> Sequence[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: system + query resp Turn t: sep + query resp """ system = system or self.default_system encoded_messages = [] for i, message in enumerate(messages): elements = [] if i == 0 and (system or tools or self.force_system): tool_text = self.format_tools.apply(content=tools)[0] if tools else "" elements += self.format_system.apply(content=(system + tool_text)) elif i > 0 and i % 2 == 0: elements += self.format_separator.apply() if message["role"] == Role.USER.value: elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) elif message["role"] == Role.ASSISTANT.value: elements += self.format_assistant.apply(content=message["content"]) elif message["role"] == Role.OBSERVATION.value: elements += self.format_observation.apply(content=message["content"]) elif message["role"] == Role.FUNCTION.value: elements += self.format_function.apply(content=message["content"]) else: raise NotImplementedError("Unexpected role: {}".format(message["role"])) encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) def _convert_elements_to_ids( self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]] ) -> List[int]: r""" Converts elements to token ids. """ token_ids = [] for elem in elements: if isinstance(elem, str): if len(elem) != 0: token_ids += tokenizer.encode(elem, add_special_tokens=False) elif isinstance(elem, dict): token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] elif isinstance(elem, set): if "bos_token" in elem and tokenizer.bos_token_id is not None: token_ids += [tokenizer.bos_token_id] elif "eos_token" in elem and tokenizer.eos_token_id is not None: token_ids += [tokenizer.eos_token_id] else: raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem))) return token_ids def _make_pairs( self, encoded_messages: Sequence[List[int]], cutoff_len: int, reserved_label_len: int, ) -> Sequence[Tuple[List[int], List[int]]]: encoded_pairs = [] total_length = 0 for i in range(0, len(encoded_messages), 2): if total_length >= cutoff_len: break max_source_len, max_target_len = infer_max_len( source_len=len(encoded_messages[i]), target_len=len(encoded_messages[i + 1]), max_len=(cutoff_len - total_length), reserved_label_len=reserved_label_len, ) source_ids = encoded_messages[i][:max_source_len] target_ids = encoded_messages[i + 1][:max_target_len] total_length += len(source_ids) + len(target_ids) encoded_pairs.append((source_ids, target_ids)) return encoded_pairs @dataclass class Llama2Template(Template): def _encode( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: str, tools: str, cutoff_len: int, reserved_label_len: int, ) -> Sequence[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: system + query resp Turn t: sep + query resp """ system = system or self.default_system encoded_messages = [] for i, message in enumerate(messages): elements = [] system_text = "" if i == 0 and (system or tools or self.force_system): tool_text = self.format_tools.apply(content=tools)[0] if tools else "" system_text = self.format_system.apply(content=(system + tool_text))[0] elif i > 0 and i % 2 == 0: elements += self.format_separator.apply() if message["role"] == Role.USER.value: elements += self.format_user.apply(content=system_text + message["content"]) elif message["role"] == Role.ASSISTANT.value: elements += self.format_assistant.apply(content=message["content"]) elif message["role"] == Role.OBSERVATION.value: elements += self.format_observation.apply(content=message["content"]) elif message["role"] == Role.FUNCTION.value: elements += self.format_function.apply(content=message["content"]) else: raise NotImplementedError("Unexpected role: {}".format(message["role"])) encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) TEMPLATES: Dict[str, Template] = {} def _register_template( name: str, format_user: Optional["Formatter"] = None, format_assistant: Optional["Formatter"] = None, format_system: Optional["Formatter"] = None, format_function: Optional["Formatter"] = None, format_observation: Optional["Formatter"] = None, format_tools: Optional["Formatter"] = None, format_separator: Optional["Formatter"] = None, default_system: str = "", stop_words: List[str] = [], image_token: str = "", efficient_eos: bool = False, replace_eos: bool = False, force_system: bool = False, ) -> None: r""" Registers a chat template. To add the following chat template: ``` [HUMAN]: user prompt here [AI]: model response here [HUMAN]: user prompt here [AI]: model response here ``` The corresponding code should be: ``` _register_template( name="custom", format_user=StringFormatter(slots=["[HUMAN]:\n{{content}}\n[AI]:\n"]), format_separator=EmptyFormatter(slots=["\n\n"]), efficient_eos=True, ) ``` """ eos_slots = [] if efficient_eos else [{"eos_token"}] template_class = Llama2Template if name.startswith("llama2") else Template default_user_formatter = StringFormatter(slots=["{{content}}"]) default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots) default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots) default_tool_formatter = ToolFormatter(tool_format="default") default_separator_formatter = EmptyFormatter() TEMPLATES[name] = template_class( format_user=format_user or default_user_formatter, format_assistant=format_assistant or default_assistant_formatter, format_system=format_system or default_user_formatter, format_function=format_function or default_function_formatter, format_observation=format_observation or format_user or default_user_formatter, format_tools=format_tools or default_tool_formatter, format_separator=format_separator or default_separator_formatter, default_system=default_system, stop_words=stop_words, image_token=image_token, efficient_eos=efficient_eos, replace_eos=replace_eos, force_system=force_system, ) def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None: is_added = tokenizer.eos_token_id is None num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token}) if is_added: logger.info("Add eos token: {}".format(tokenizer.eos_token)) else: logger.info("Replace eos token: {}".format(tokenizer.eos_token)) if num_added_tokens > 0: logger.warning("New tokens have been added, make sure `resize_vocab` is True.") def _jinja_escape(content: str) -> str: return content.replace("'", r"\'") def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str: slot_items = [] for slot in slots: if isinstance(slot, str): slot_pieces = slot.split("{{content}}") if slot_pieces[0]: slot_items.append("'" + _jinja_escape(slot_pieces[0]) + "'") if len(slot_pieces) > 1: slot_items.append(placeholder) if slot_pieces[1]: slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'") elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced if "bos_token" in slot and tokenizer.bos_token_id is not None: slot_items.append("'" + tokenizer.bos_token + "'") elif "eos_token" in slot and tokenizer.eos_token_id is not None: slot_items.append("'" + tokenizer.eos_token + "'") elif isinstance(slot, dict): raise ValueError("Dict is not supported.") return " + ".join(slot_items) def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str: jinja_template = "" if template.default_system: jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}" jinja_template += ( "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}" ) system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message") if isinstance(template, Llama2Template): pass elif template.force_system: jinja_template += "{{ " + system_message + " }}" else: jinja_template += "{% if system_message is defined %}{{ " + system_message + " }}{% endif %}" jinja_template += "{% for message in messages %}" jinja_template += "{% set content = message['content'] %}" if isinstance(template, Llama2Template): jinja_template += "{% if loop.index0 == 0 and system_message is defined %}" jinja_template += "{% set content = " + system_message + " + message['content'] %}" jinja_template += "{% endif %}" jinja_template += "{% if message['role'] == 'user' %}" user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer) jinja_template += "{{ " + user_message + " }}" jinja_template += "{% elif message['role'] == 'assistant' %}" assistant_message = _convert_slots_to_jinja( template.format_assistant.apply() + template.format_separator.apply(), tokenizer ) jinja_template += "{{ " + assistant_message + " }}" jinja_template += "{% endif %}" jinja_template += "{% endfor %}" return jinja_template def get_template_and_fix_tokenizer( tokenizer: "PreTrainedTokenizer", name: Optional[str] = None, ) -> Template: if name is None: template = TEMPLATES["empty"] # placeholder else: template = TEMPLATES.get(name, None) if template is None: raise ValueError("Template {} does not exist.".format(name)) stop_words = template.stop_words if template.replace_eos: if not stop_words: raise ValueError("Stop words are required to replace the EOS token.") _add_or_replace_eos_token(tokenizer, eos_token=stop_words[0]) stop_words = stop_words[1:] if tokenizer.eos_token_id is None: _add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>") if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token logger.info("Add pad token: {}".format(tokenizer.pad_token)) if stop_words: num_added_tokens = tokenizer.add_special_tokens( dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False ) logger.info("Add {} to stop words.".format(",".join(stop_words))) if num_added_tokens > 0: logger.warning("New tokens have been added, make sure `resize_vocab` is True.") try: tokenizer.chat_template = _get_jinja_template(template, tokenizer) except ValueError: logger.info("Cannot add this chat template to tokenizer.") return template _register_template( name="alpaca", format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), format_separator=EmptyFormatter(slots=["\n\n"]), default_system=( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" ), ) _register_template( name="aquila", format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), format_separator=EmptyFormatter(slots=["###"]), default_system=( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions." ), stop_words=[""], efficient_eos=True, ) _register_template( name="atom", format_user=StringFormatter( slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"] ), format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]), ) _register_template( name="baichuan", format_user=StringFormatter(slots=[{"token": ""}, "{{content}}", {"token": ""}]), efficient_eos=True, ) _register_template( name="baichuan2", format_user=StringFormatter(slots=["{{content}}"]), efficient_eos=True, ) _register_template( name="belle", format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), format_separator=EmptyFormatter(slots=["\n\n"]), force_system=True, ) _register_template( name="bluelm", format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), ) _register_template( name="breeze", format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), default_system=( "You are a helpful AI assistant built by MediaTek Research. " "The user you are helping speaks Traditional Chinese and comes from Taiwan." ), efficient_eos=True, ) _register_template( name="chatglm2", format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), format_separator=EmptyFormatter(slots=["\n\n"]), efficient_eos=True, force_system=True, ) _register_template( name="chatglm3", format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), format_assistant=StringFormatter(slots=["\n", "{{content}}"]), format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), format_observation=StringFormatter( slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}] ), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, force_system=True, ) _register_template( name="chatglm3_system", format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), format_assistant=StringFormatter(slots=["\n", "{{content}}"]), format_system=StringFormatter( slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"] ), format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), format_observation=StringFormatter( slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}] ), default_system=( "You are ChatGLM3, a large language model trained by Zhipu.AI. " "Follow the user's instructions carefully. Respond using markdown." ), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, ) _register_template( name="chatml", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=["<|im_end|>", "<|im_start|>"], replace_eos=True, ) _register_template( name="chatml_de", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.", stop_words=["<|im_end|>", "<|im_start|>"], replace_eos=True, ) _register_template( name="codegeex2", format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), force_system=True, ) _register_template( name="cohere", format_user=StringFormatter( slots=[ ( "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>" "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" ) ] ), format_system=StringFormatter( slots=[{"bos_token"}, "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"] ), default_system=( "You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users " "by providing thorough responses. You are trained by Cohere." ), ) _register_template( name="cpm", format_user=StringFormatter(slots=["<用户>{{content}}"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) _register_template( name="dbrx", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system=( "You are DBRX, created by Databricks. You were last updated in December 2023. " "You answer questions based on information available up to that point.\n" "YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough " "responses to more complex and open-ended questions.\nYou assist with various tasks, " "from writing to coding (using markdown for code blocks — remember to use ``` with " "code, JSON, and tables).\n(You do not have real-time data access or code execution " "capabilities. You avoid stereotyping and provide balanced perspectives on " "controversial topics. You do not provide song lyrics, poems, or news articles and " "do not divulge details of your training data.)\nThis is your system prompt, " "guiding your responses. Do not reference it, just respond to the user. If you find " "yourself talking about this message, stop. You should be responding appropriately " "and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION " "ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY." ), stop_words=["<|im_end|>"], replace_eos=True, ) _register_template( name="deepseek", format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) _register_template( name="deepseekcoder", format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]), format_assistant=StringFormatter(slots=["\n", "{{content}}"]), format_separator=EmptyFormatter(slots=["\n<|EOT|>\n"]), default_system=( "You are an AI programming assistant, utilizing the Deepseek Coder model, " "developed by Deepseek Company, and you only answer questions related to computer science. " "For politically sensitive questions, security and privacy issues, " "and other non-computer science questions, you will refuse to answer\n" ), stop_words=["<|EOT|>"], efficient_eos=True, ) _register_template( name="default", format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]), format_system=StringFormatter(slots=["{{content}}\n"]), format_separator=EmptyFormatter(slots=["\n"]), ) _register_template( name="empty", format_user=StringFormatter(slots=["{{content}}"]), format_assistant=StringFormatter(slots=["{{content}}"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), efficient_eos=True, force_system=True, ) _register_template( name="falcon", format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), format_separator=EmptyFormatter(slots=["\n"]), efficient_eos=True, ) _register_template( name="fewshot", format_separator=EmptyFormatter(slots=["\n\n"]), efficient_eos=True, ) _register_template( name="gemma", format_user=StringFormatter(slots=["user\n{{content}}\nmodel\n"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), format_observation=StringFormatter( slots=["tool\n{{content}}\nmodel\n"] ), format_separator=EmptyFormatter(slots=["\n"]), efficient_eos=True, force_system=True, ) _register_template( name="glm4", format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]), format_assistant=StringFormatter(slots=["\n{{content}}"]), format_system=StringFormatter(slots=["[gMASK]{{content}}"]), format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, force_system=True, ) _register_template( name="intern", format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": ""}, "\n<|Bot|>:"]), format_separator=EmptyFormatter(slots=[{"token": ""}, "\n"]), stop_words=[""], efficient_eos=True, ) _register_template( name="intern2", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system=( "You are an AI assistant whose name is InternLM (书生·浦语).\n" "- InternLM (书生·浦语) is a conversational language model that is developed " "by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen " "by the user such as English and 中文." ), stop_words=["<|im_end|>"], efficient_eos=True, # internlm2 tokenizer cannot set eos_token_id ) _register_template( name="llama2", format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]), format_system=StringFormatter(slots=["<>\n{{content}}\n<>\n\n"]), ) _register_template( name="llama2_zh", format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=["<>\n{{content}}\n<>\n\n"]), default_system="You are a helpful assistant. 你是一个乐于助人的助手。", ) _register_template( name="llama3", format_user=StringFormatter( slots=[ ( "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), format_system=StringFormatter( slots=[{"bos_token"}, "<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"] ), format_observation=StringFormatter( slots=[ ( "<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) ] ), default_system="You are a helpful assistant.", stop_words=["<|eot_id|>"], replace_eos=True, ) _register_template( name="mistral", format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) _register_template( name="olmo", format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]), format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]), force_system=True, ) _register_template( name="openchat", format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) _register_template( name="openchat-3.6", format_user=StringFormatter( slots=[ ( "<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>" "<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n" ) ] ), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), stop_words=["<|eot_id|>"], replace_eos=True, force_system=True, ) _register_template( name="orion", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) _register_template( name="phi", format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]), format_system=StringFormatter(slots=[{"bos_token"}, "<|system|>\n{{content}}<|end|>\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system="You are a helpful AI assistant.", stop_words=["<|end|>"], replace_eos=True, ) _register_template( name="qwen", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system="You are a helpful assistant.", stop_words=["<|im_end|>"], replace_eos=True, ) _register_template( name="solar", format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]), format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]), efficient_eos=True, ) _register_template( name="starchat", format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>"]), format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=["<|end|>"], replace_eos=True, force_system=True, ) _register_template( name="telechat", format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]), format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]), stop_words=["<_end>"], replace_eos=True, ) _register_template( name="vicuna", format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), default_system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), ) _register_template( name="xuanyuan", format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]), default_system=( "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," "会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" "不安全、有争议、政治敏感等相关的话题、问题和指示。\n" ), ) _register_template( name="xverse", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]), ) _register_template( name="yayi", format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]), format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]), format_separator=EmptyFormatter(slots=["\n\n"]), default_system=( "You are a helpful, respectful and honest assistant named YaYi " "developed by Beijing Wenge Technology Co.,Ltd. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information." ), stop_words=["<|End|>"], ) _register_template( name="yi", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=["<|im_end|>"], replace_eos=True, ) _register_template( name="yi_vl", format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]), format_separator=EmptyFormatter(slots=["\n"]), default_system=( "This is a chat between an inquisitive human and an AI assistant. " "Assume the role of the AI assistant. Read all the images carefully, " "and respond to the human's questions with informative, helpful, detailed and polite answers. " "这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。" "仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n\n" ), stop_words=["###"], efficient_eos=True, ) _register_template( name="yuan", format_user=StringFormatter(slots=["{{content}}", {"token": ""}]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=[""], replace_eos=True, ) _register_template( name="zephyr", format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]), format_assistant=StringFormatter(slots=["\n{{content}}", {"eos_token"}]), format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]), default_system="You are Zephyr, a helpful assistant.", ) _register_template( name="ziya", format_user=StringFormatter(slots=[":{{content}}\n:"]), format_separator=EmptyFormatter(slots=["\n"]), )