# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os from typing import TYPE_CHECKING, Dict, Tuple import torch from peft import PeftModel from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel from transformers.utils import ( SAFE_WEIGHTS_NAME, WEIGHTS_NAME, is_safetensors_available, is_torch_bf16_gpu_available, is_torch_cuda_available, is_torch_mps_available, is_torch_npu_available, is_torch_xpu_available, ) from transformers.utils.versions import require_version from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME from .logging import get_logger if is_safetensors_available(): from safetensors import safe_open from safetensors.torch import save_file _is_fp16_available = is_torch_npu_available() or is_torch_cuda_available() try: _is_bf16_available = is_torch_bf16_gpu_available() except Exception: _is_bf16_available = False if TYPE_CHECKING: from trl import AutoModelForCausalLMWithValueHead from ..hparams import ModelArguments logger = get_logger(__name__) class AverageMeter: r""" Computes and stores the average and current value. """ def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def check_dependencies() -> None: if os.environ.get("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]: logger.warning("Version checking has been disabled, may lead to unexpected behaviors.") else: require_version("transformers>=4.41.2", "To fix: pip install transformers>=4.41.2") require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0") require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1") require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1") require_version("trl>=0.8.6", "To fix: pip install trl>=0.8.6") def count_parameters(model: torch.nn.Module) -> Tuple[int, int]: r""" Returns the number of trainable parameters and number of all parameters in the model. """ trainable_params, all_param = 0, 0 for param in model.parameters(): num_params = param.numel() # if using DS Zero 3 and the weights are initialized empty if num_params == 0 and hasattr(param, "ds_numel"): num_params = param.ds_numel # Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2 if param.__class__.__name__ == "Params4bit": if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"): num_bytes = param.quant_storage.itemsize elif hasattr(param, "element_size"): # for older pytorch version num_bytes = param.element_size() else: num_bytes = 1 num_params = num_params * 2 * num_bytes all_param += num_params if param.requires_grad: trainable_params += num_params return trainable_params, all_param def fix_valuehead_checkpoint( model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool ) -> None: r""" The model is already unwrapped. There are three cases: 1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...} 2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...} 3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...} We assume `stage3_gather_16bit_weights_on_model_save=true`. """ if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)): return if safe_serialization: path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME) with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f: state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()} else: path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME) state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu") decoder_state_dict = {} v_head_state_dict = {} for name, param in state_dict.items(): if name.startswith("v_head."): v_head_state_dict[name] = param else: decoder_state_dict[name.replace("pretrained_model.", "")] = param os.remove(path_to_checkpoint) model.pretrained_model.save_pretrained( output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization ) if safe_serialization: save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) else: torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME)) logger.info("Value head model saved at: {}".format(output_dir)) def get_current_device() -> torch.device: r""" Gets the current available device. """ if is_torch_xpu_available(): device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0")) elif is_torch_npu_available(): device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0")) elif is_torch_mps_available(): device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0")) elif is_torch_cuda_available(): device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0")) else: device = "cpu" return torch.device(device) def get_device_count() -> int: r""" Gets the number of available GPU or NPU devices. """ if is_torch_npu_available(): return torch.npu.device_count() elif is_torch_cuda_available(): return torch.cuda.device_count() else: return 0 def get_logits_processor() -> "LogitsProcessorList": r""" Gets logits processor that removes NaN and Inf logits. """ logits_processor = LogitsProcessorList() logits_processor.append(InfNanRemoveLogitsProcessor()) return logits_processor def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype: r""" Infers the optimal dtype according to the model_dtype and device compatibility. """ if _is_bf16_available and model_dtype == torch.bfloat16: return torch.bfloat16 elif _is_fp16_available: return torch.float16 else: return torch.float32 def is_gpu_or_npu_available() -> bool: r""" Checks if the GPU or NPU is available. """ return is_torch_npu_available() or is_torch_cuda_available() def has_tokenized_data(path: os.PathLike) -> bool: r""" Checks if the path has a tokenized dataset. """ return os.path.isdir(path) and len(os.listdir(path)) > 0 def torch_gc() -> None: r""" Collects GPU or NPU memory. """ gc.collect() if is_torch_xpu_available(): torch.xpu.empty_cache() elif is_torch_npu_available(): torch.npu.empty_cache() elif is_torch_mps_available(): torch.mps.empty_cache() elif is_torch_cuda_available(): torch.cuda.empty_cache() def try_download_model_from_ms(model_args: "ModelArguments") -> str: if not use_modelscope() or os.path.exists(model_args.model_name_or_path): return model_args.model_name_or_path try: from modelscope import snapshot_download revision = "master" if model_args.model_revision == "main" else model_args.model_revision return snapshot_download(model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir) except ImportError: raise ImportError("Please install modelscope via `pip install modelscope -U`") def use_modelscope() -> bool: return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]