# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import List, Literal, Optional @dataclass class FreezeArguments: r""" Arguments pertaining to the freeze (partial-parameter) training. """ freeze_trainable_layers: int = field( default=2, metadata={ "help": ( "The number of trainable layers for freeze (partial-parameter) fine-tuning. " "Positive numbers mean the last n layers are set as trainable, " "negative numbers mean the first n layers are set as trainable." ) }, ) freeze_trainable_modules: str = field( default="all", metadata={ "help": ( "Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. " "Use commas to separate multiple modules. " "Use `all` to specify all the available modules." ) }, ) freeze_extra_modules: Optional[str] = field( default=None, metadata={ "help": ( "Name(s) of modules apart from hidden layers to be set as trainable " "for freeze (partial-parameter) fine-tuning. " "Use commas to separate multiple modules." ) }, ) @dataclass class LoraArguments: r""" Arguments pertaining to the LoRA training. """ additional_target: Optional[str] = field( default=None, metadata={ "help": ( "Name(s) of modules apart from LoRA layers to be set as trainable " "and saved in the final checkpoint. " "Use commas to separate multiple modules." ) }, ) lora_alpha: Optional[int] = field( default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}, ) lora_dropout: float = field( default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."}, ) lora_rank: int = field( default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}, ) lora_target: str = field( default="all", metadata={ "help": ( "Name(s) of target modules to apply LoRA. " "Use commas to separate multiple modules. " "Use `all` to specify all the linear modules." ) }, ) loraplus_lr_ratio: Optional[float] = field( default=None, metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."}, ) loraplus_lr_embedding: float = field( default=1e-6, metadata={"help": "LoRA plus learning rate for lora embedding layers."}, ) use_rslora: bool = field( default=False, metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."}, ) use_dora: bool = field( default=False, metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."}, ) pissa_init: bool = field( default=False, metadata={"help": "Whether or not to initialize a PiSSA adapter."}, ) pissa_iter: int = field( default=4, metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."}, ) pissa_convert: bool = field( default=False, metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."}, ) create_new_adapter: bool = field( default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}, ) @dataclass class RLHFArguments: r""" Arguments pertaining to the PPO, DPO and KTO training. """ pref_beta: float = field( default=0.1, metadata={"help": "The beta parameter in the preference loss."}, ) pref_ftx: float = field( default=0.0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}, ) pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field( default="sigmoid", metadata={"help": "The type of DPO loss to use."}, ) dpo_label_smoothing: float = field( default=0.0, metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."}, ) kto_chosen_weight: float = field( default=1.0, metadata={"help": "The weight factor of the desirable losses in KTO training."}, ) kto_rejected_weight: float = field( default=1.0, metadata={"help": "The weight factor of the undesirable losses in KTO training."}, ) simpo_gamma: float = field( default=0.5, metadata={"help": "The target reward margin term in SimPO loss."}, ) ppo_buffer_size: int = field( default=1, metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}, ) ppo_epochs: int = field( default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."}, ) ppo_score_norm: bool = field( default=False, metadata={"help": "Use score normalization in PPO training."}, ) ppo_target: float = field( default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."}, ) ppo_whiten_rewards: bool = field( default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."}, ) ref_model: Optional[str] = field( default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."}, ) ref_model_adapters: Optional[str] = field( default=None, metadata={"help": "Path to the adapters of the reference model."}, ) ref_model_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the reference model."}, ) reward_model: Optional[str] = field( default=None, metadata={"help": "Path to the reward model used for the PPO training."}, ) reward_model_adapters: Optional[str] = field( default=None, metadata={"help": "Path to the adapters of the reward model."}, ) reward_model_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the reward model."}, ) reward_model_type: Literal["lora", "full", "api"] = field( default="lora", metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}, ) @dataclass class GaloreArguments: r""" Arguments pertaining to the GaLore algorithm. """ use_galore: bool = field( default=False, metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."}, ) galore_target: str = field( default="all", metadata={ "help": ( "Name(s) of modules to apply GaLore. Use commas to separate multiple modules. " "Use `all` to specify all the linear modules." ) }, ) galore_rank: int = field( default=16, metadata={"help": "The rank of GaLore gradients."}, ) galore_update_interval: int = field( default=200, metadata={"help": "Number of steps to update the GaLore projection."}, ) galore_scale: float = field( default=0.25, metadata={"help": "GaLore scaling coefficient."}, ) galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field( default="std", metadata={"help": "Type of GaLore projection."}, ) galore_layerwise: bool = field( default=False, metadata={"help": "Whether or not to enable layer-wise update to further save memory."}, ) @dataclass class BAdamArgument: r""" Arguments pertaining to the BAdam optimizer. """ use_badam: bool = field( default=False, metadata={"help": "Whether or not to use the BAdam optimizer."}, ) badam_mode: Literal["layer", "ratio"] = field( default="layer", metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."}, ) badam_start_block: Optional[int] = field( default=None, metadata={"help": "The starting block index for layer-wise BAdam."}, ) badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field( default="ascending", metadata={"help": "the strategy of picking block to update for layer-wise BAdam."}, ) badam_switch_interval: Optional[int] = field( default=50, metadata={ "help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update." }, ) badam_update_ratio: float = field( default=0.05, metadata={"help": "The ratio of the update for ratio-wise BAdam."}, ) badam_mask_mode: Literal["adjacent", "scatter"] = field( default="adjacent", metadata={ "help": ( "The mode of the mask for BAdam optimizer. " "`adjacent` means that the trainable parameters are adjacent to each other, " "`scatter` means that trainable parameters are randomly choosed from the weight." ) }, ) badam_verbose: int = field( default=0, metadata={ "help": ( "The verbosity level of BAdam optimizer. " "0 for no print, 1 for print the block prefix, 2 for print trainable parameters." ) }, ) @dataclass class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument): r""" Arguments pertaining to which techniques we are going to fine-tuning with. """ pure_bf16: bool = field( default=False, metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."}, ) stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field( default="sft", metadata={"help": "Which stage will be performed in training."}, ) finetuning_type: Literal["lora", "freeze", "full"] = field( default="lora", metadata={"help": "Which fine-tuning method to use."}, ) use_llama_pro: bool = field( default=False, metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."}, ) freeze_vision_tower: bool = field( default=True, metadata={"help": "Whether ot not to freeze vision tower in MLLM training."}, ) train_mm_proj_only: bool = field( default=False, metadata={"help": "Whether or not to train the multimodal projector for MLLM only."}, ) plot_loss: bool = field( default=False, metadata={"help": "Whether or not to save the training loss curves."}, ) def __post_init__(self): def split_arg(arg): if isinstance(arg, str): return [item.strip() for item in arg.split(",")] return arg self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules) self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules) self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2 self.lora_target: List[str] = split_arg(self.lora_target) self.additional_target: Optional[List[str]] = split_arg(self.additional_target) self.galore_target: List[str] = split_arg(self.galore_target) self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"] assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." if self.stage == "ppo" and self.reward_model is None: raise ValueError("`reward_model` is necessary for PPO training.") if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora": raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.") if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6: raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.") if self.use_llama_pro and self.finetuning_type == "full": raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.") if self.finetuning_type == "lora" and (self.use_galore or self.use_badam): raise ValueError("Cannot use LoRA with GaLore or BAdam together.") if self.use_galore and self.use_badam: raise ValueError("Cannot use GaLore with BAdam together.") if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora": raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.") if self.pissa_convert and self.finetuning_type != "lora": raise ValueError("`pissa_convert` is only valid for LoRA training.") if self.pissa_convert and (self.stage in ["rm", "ppo", "kto"] or self.use_ref_model): raise ValueError("Cannot use PiSSA for current training stage.") if self.train_mm_proj_only and self.finetuning_type != "full": raise ValueError("`train_mm_proj_only` is only valid for full training.")