import gradio as gr import requests import io import random import os import time from PIL import Image from deep_translator import GoogleTranslator import json from gradio_client import Client # Project by Nymbo API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 # Initialize the prompt enhancer client prompt_enhancer = Client("K00B404/mistral-nemo-prompt-enhancer") def enhance_prompt(prompt, enable_enhancement=True): """Enhance the given prompt using the Mistral Nemo prompt enhancer.""" if not enable_enhancement: print(f'\033[1mPrompt enhancement disabled, using original prompt:\033[0m {prompt}') return prompt try: system_message = "You are an expert at writing detailed, high-quality image generation prompts. Enhance the given prompt by adding relevant artistic details, style elements, and quality descriptors. Keep the original intent but make it more elaborate and specific." enhanced = prompt_enhancer.predict( message=prompt, system_message=system_message, max_tokens=512, temperature=0.7, top_p=0.95, api_name="/chat" ) print(f'\033[1mOriginal prompt:\033[0m {prompt}') print(f'\033[1mEnhanced prompt:\033[0m {enhanced}') return enhanced except Exception as e: print(f"Error enhancing prompt: {e}") return prompt # Fall back to original prompt if enhancement fails # Function to query the API and return the generated image def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024, enable_enhancement=True): if prompt == "" or prompt is None: return None, None key = random.randint(0, 999) API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} # Translate the prompt from Russian to English if necessary prompt = GoogleTranslator(source='ru', target='en').translate(prompt) print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') # Enhance the prompt using the Mistral Nemo model if enabled enhanced_prompt = enhance_prompt(prompt, enable_enhancement) # Add some extra flair to the prompt final_prompt = f"{enhanced_prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key} final prompt:\033[0m {final_prompt}') # Prepare the payload for the API call, including width and height payload = { "inputs": final_prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength, "parameters": { "width": width, "height": height } } # Send the request to the API and handle the response response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: # Convert the response content into an image image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})') return image, enhanced_prompt except Exception as e: print(f"Error when trying to open the image: {e}") return None, None # CSS to style the app css = """ #app-container { max-width: 800px; margin-left: auto; margin-right: auto; } """ # Build the Gradio UI with Blocks with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: # Add a title to the app gr.HTML("