import os,json import gradio as gr from huggingface_hub import InferenceClient # Retrieve the API token from the environment variable API_TOKEN = os.getenv("HF_READ_TOKEN") #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Initialize the Hugging Face Inference Client client = InferenceClient( "mistralai/Mistral-Nemo-Instruct-2407", token=API_TOKEN ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: response_stream = client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ) for message in response_stream: token = message.choices[0].delta.content response += token yield response except (json.JSONDecodeError, ValueError) as e: print(f"Error decoding response: {e}") yield "An error occurred while processing the request." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(show_api=True, share=False,show_error=True)