Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
class UNet(nn.Module): | |
def __init__(self): | |
super(UNet, self).__init__() | |
# Encoder | |
self.encoder = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), # 256 -> 128 | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), # 128 -> 64 | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), # 64 -> 32 | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # 32 -> 16 | |
nn.ReLU(inplace=True), | |
nn.Conv2d(512, 1024, kernel_size=4, stride=2, padding=1), # 16 -> 8 | |
nn.ReLU(inplace=True) | |
) | |
# Decoder | |
self.decoder = nn.Sequential( | |
nn.ConvTranspose2d(1024, 512, kernel_size=4, stride=2, padding=1), # 8 -> 16 | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), # 16 -> 32 | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), # 32 -> 64 | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), # 64 -> 128 | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), # 128 -> 256 | |
nn.Tanh() # Output range [-1, 1] | |
) | |
def forward(self, x): | |
enc = self.encoder(x) | |
dec = self.decoder(enc) | |
return dec |