Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -60,29 +60,94 @@ class UNetWrapper:
|
|
60 |
def __init__(self, unet_model, repo_id):
|
61 |
self.model = unet_model
|
62 |
self.repo_id = repo_id
|
63 |
-
self.token = os.getenv('HF_WRITE')
|
|
|
64 |
|
65 |
def push_to_hub(self):
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Training function
|
88 |
def train_model(epochs):
|
@@ -134,12 +199,9 @@ def train_model(epochs):
|
|
134 |
return model
|
135 |
|
136 |
# Push model to Hugging Face Hub
|
137 |
-
def push_model_to_hub(model,
|
138 |
-
|
139 |
-
|
140 |
-
model_wrapper.push_to_hub()
|
141 |
-
# Push the model to the Hugging Face hub
|
142 |
-
#model.push_to_hub(repo_name)
|
143 |
|
144 |
# Gradio interface function
|
145 |
def gradio_train(epochs):
|
|
|
60 |
def __init__(self, unet_model, repo_id):
|
61 |
self.model = unet_model
|
62 |
self.repo_id = repo_id
|
63 |
+
self.token = os.getenv('HF_WRITE') # Make sure this environment variable is set
|
64 |
+
self.api = HfApi()
|
65 |
|
66 |
def push_to_hub(self):
|
67 |
+
try:
|
68 |
+
# Save model state and configuration
|
69 |
+
save_dict = {
|
70 |
+
'model_state_dict': self.model.state_dict(),
|
71 |
+
'model_config': {
|
72 |
+
'big': isinstance(self.model, big_UNet),
|
73 |
+
'img_size': 1024 if isinstance(self.model, big_UNet) else 256
|
74 |
+
},
|
75 |
+
'model_architecture': str(self.model)
|
76 |
+
}
|
77 |
+
|
78 |
+
# Save model locally
|
79 |
+
pth_name = 'model_weights.pth'
|
80 |
+
torch.save(save_dict, pth_name)
|
81 |
+
|
82 |
+
# Create repo if it doesn't exist
|
83 |
+
try:
|
84 |
+
create_repo(
|
85 |
+
repo_id=self.repo_id,
|
86 |
+
token=self.token,
|
87 |
+
exist_ok=True
|
88 |
+
)
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Repository creation note: {e}")
|
91 |
+
|
92 |
+
# Upload the model file
|
93 |
+
self.api.upload_file(
|
94 |
+
path_or_fileobj=pth_name,
|
95 |
+
path_in_repo=pth_name,
|
96 |
+
repo_id=self.repo_id,
|
97 |
+
token=self.token,
|
98 |
+
repo_type="model"
|
99 |
+
)
|
100 |
+
|
101 |
+
# Create and upload model card
|
102 |
+
model_card = f"""---
|
103 |
+
tags:
|
104 |
+
- unet
|
105 |
+
- pix2pix
|
106 |
+
library_name: pytorch
|
107 |
+
---
|
108 |
+
|
109 |
+
# Pix2Pix UNet Model
|
110 |
+
|
111 |
+
## Model Description
|
112 |
+
Custom UNet model for Pix2Pix image translation.
|
113 |
+
- Image Size: {1024 if isinstance(self.model, big_UNet) else 256}
|
114 |
+
- Model Type: {"Big (1024)" if isinstance(self.model, big_UNet) else "Small (256)"}
|
115 |
+
|
116 |
+
## Usage
|
117 |
+
|
118 |
+
```python
|
119 |
+
import torch
|
120 |
+
from small_256_model import UNet as small_UNet
|
121 |
+
from big_1024_model import UNet as big_UNet
|
122 |
+
|
123 |
+
# Load the model
|
124 |
+
checkpoint = torch.load('model_weights.pth')
|
125 |
+
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
|
126 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
127 |
+
model.eval()
|
128 |
+
Model Architecture
|
129 |
+
{str(self.model)}
|
130 |
+
"""
|
131 |
+
# Save and upload README
|
132 |
+
with open("README.md", "w") as f:
|
133 |
+
f.write(model_card)
|
134 |
+
|
135 |
+
self.api.upload_file(
|
136 |
+
path_or_fileobj="README.md",
|
137 |
+
path_in_repo="README.md",
|
138 |
+
repo_id=self.repo_id,
|
139 |
+
token=self.token,
|
140 |
+
repo_type="model"
|
141 |
+
)
|
142 |
+
|
143 |
+
# Clean up local files
|
144 |
+
os.remove(pth_name)
|
145 |
+
os.remove("README.md")
|
146 |
+
|
147 |
+
print(f"Model successfully uploaded to {self.repo_id}")
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
print(f"Error uploading model: {e}")
|
151 |
|
152 |
# Training function
|
153 |
def train_model(epochs):
|
|
|
199 |
return model
|
200 |
|
201 |
# Push model to Hugging Face Hub
|
202 |
+
def push_model_to_hub(model, repo_id):
|
203 |
+
wrapper = UNetWrapper(model, repo_id)
|
204 |
+
wrapper.push_to_hub()
|
|
|
|
|
|
|
205 |
|
206 |
# Gradio interface function
|
207 |
def gradio_train(epochs):
|