Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define the Pix2Pix model (UNet)
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from torchvision import transforms
|
8 |
+
from datasets import load_dataset
|
9 |
+
from huggingface_hub import Repository, create_repo
|
10 |
+
import gradio as gr
|
11 |
+
from PIL import Image
|
12 |
+
import os
|
13 |
+
|
14 |
+
# Parameters
|
15 |
+
IMG_SIZE = 256
|
16 |
+
BATCH_SIZE = 1
|
17 |
+
EPOCHS = 12
|
18 |
+
LR = 0.0002
|
19 |
+
|
20 |
+
# Device configuration
|
21 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
22 |
+
|
23 |
+
# Define the Pix2Pix model (Simplified UNet)
|
24 |
+
class UNet(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(UNet, self).__init__()
|
27 |
+
|
28 |
+
# Encoder
|
29 |
+
self.encoder = nn.Sequential(
|
30 |
+
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), # 256 -> 128
|
31 |
+
nn.ReLU(inplace=True),
|
32 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), # 128 -> 64
|
33 |
+
nn.ReLU(inplace=True),
|
34 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), # 64 -> 32
|
35 |
+
nn.ReLU(inplace=True),
|
36 |
+
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # 32 -> 16
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv2d(512, 1024, kernel_size=4, stride=2, padding=1), # 16 -> 8
|
39 |
+
nn.ReLU(inplace=True)
|
40 |
+
)
|
41 |
+
|
42 |
+
# Decoder
|
43 |
+
self.decoder = nn.Sequential(
|
44 |
+
nn.ConvTranspose2d(1024, 512, kernel_size=4, stride=2, padding=1), # 8 -> 16
|
45 |
+
nn.ReLU(inplace=True),
|
46 |
+
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), # 16 -> 32
|
47 |
+
nn.ReLU(inplace=True),
|
48 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), # 32 -> 64
|
49 |
+
nn.ReLU(inplace=True),
|
50 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), # 64 -> 128
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), # 128 -> 256
|
53 |
+
nn.Tanh() # Output range [-1, 1]
|
54 |
+
)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
enc = self.encoder(x)
|
58 |
+
dec = self.decoder(enc)
|
59 |
+
return dec
|
60 |
+
|
61 |
+
# Training function
|
62 |
+
def train_model(epochs):
|
63 |
+
# Load the dataset
|
64 |
+
ds = load_dataset("K00B404/pix2pix_flux_set")
|
65 |
+
|
66 |
+
# Transform function to resize and convert to tensor
|
67 |
+
transform = transforms.Compose([
|
68 |
+
transforms.Resize((IMG_SIZE, IMG_SIZE)),
|
69 |
+
transforms.ToTensor(),
|
70 |
+
])
|
71 |
+
|
72 |
+
# Create dataset and dataloader
|
73 |
+
class Pix2PixDataset(torch.utils.data.Dataset):
|
74 |
+
def __init__(self, ds):
|
75 |
+
self.ds = ds
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
return len(self.ds["train"])
|
79 |
+
|
80 |
+
def __getitem__(self, idx):
|
81 |
+
original = Image.open(self.ds["train"][idx]['original_image']).convert('RGB')
|
82 |
+
target = Image.open(self.ds["train"][idx]['target_image']).convert('RGB')
|
83 |
+
return transform(original), transform(target)
|
84 |
+
|
85 |
+
dataset = Pix2PixDataset(ds)
|
86 |
+
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
|
87 |
+
|
88 |
+
# Initialize model, loss function, and optimizer
|
89 |
+
model = UNet().to(device)
|
90 |
+
criterion = nn.L1Loss()
|
91 |
+
optimizer = optim.Adam(model.parameters(), lr=LR)
|
92 |
+
|
93 |
+
# Training loop
|
94 |
+
for epoch in range(epochs):
|
95 |
+
for i, (original, target) in enumerate(dataloader):
|
96 |
+
original, target = original.to(device), target.to(device)
|
97 |
+
optimizer.zero_grad()
|
98 |
+
|
99 |
+
# Forward pass
|
100 |
+
output = model(target)
|
101 |
+
loss = criterion(output, original)
|
102 |
+
|
103 |
+
# Backward pass
|
104 |
+
loss.backward()
|
105 |
+
optimizer.step()
|
106 |
+
|
107 |
+
if i % 100 == 0:
|
108 |
+
print(f"Epoch [{epoch}/{epochs}], Step [{i}/{len(dataloader)}], Loss: {loss.item():.4f}")
|
109 |
+
|
110 |
+
# Return trained model
|
111 |
+
return model
|
112 |
+
|
113 |
+
# Push model to Hugging Face Hub
|
114 |
+
def push_model_to_hub(model, repo_name):
|
115 |
+
repo = Repository(repo_name)
|
116 |
+
repo.push_to_hub()
|
117 |
+
|
118 |
+
# Save the model state dict
|
119 |
+
model_save_path = os.path.join(repo_name, "pix2pix_model.pth")
|
120 |
+
torch.save(model.state_dict(), model_save_path)
|
121 |
+
|
122 |
+
# Push the model to the repo
|
123 |
+
repo.push_to_hub(commit_message="Initial commit with trained Pix2Pix model.")
|
124 |
+
|
125 |
+
# Gradio interface function
|
126 |
+
def gradio_train(epochs):
|
127 |
+
model = train_model(int(epochs))
|
128 |
+
push_model_to_hub(model, "K00B404/pix2pix_flux")
|
129 |
+
return f"Model trained for {epochs} epochs and pushed to Hugging Face Hub repository 'K00B404/pix2pix_flux'."
|
130 |
+
|
131 |
+
# Gradio Interface
|
132 |
+
gr_interface = gr.Interface(
|
133 |
+
fn=gradio_train,
|
134 |
+
inputs=gr.Number(label="Number of Epochs"),
|
135 |
+
outputs="text",
|
136 |
+
title="Pix2Pix Model Training",
|
137 |
+
description="Train the Pix2Pix model and push it to the Hugging Face Hub repository."
|
138 |
+
)
|
139 |
+
|
140 |
+
if __name__ == '__main__':
|
141 |
+
# Create or clone the repository
|
142 |
+
create_repo("K00B404/pix2pix_flux", exist_ok=True)
|
143 |
+
|
144 |
+
# Launch the Gradio app
|
145 |
+
gr_interface.launch()
|