Spaces:
Runtime error
Runtime error
from transformers import AutoProcessor, AutoModelForCausalLM | |
import spaces | |
import re | |
from PIL import Image | |
import torch | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to(device).eval() | |
fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True) | |
def fl_modify_caption(caption: str) -> str: | |
""" | |
Removes specific prefixes from captions if present, otherwise returns the original caption. | |
Args: | |
caption (str): A string containing a caption. | |
Returns: | |
str: The caption with the prefix removed if it was present, or the original caption. | |
""" | |
# Define the prefixes to remove | |
prefix_substrings = [ | |
('captured from ', ''), | |
('captured at ', '') | |
] | |
# Create a regex pattern to match any of the prefixes | |
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) | |
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings} | |
# Function to replace matched prefix with its corresponding replacement | |
def replace_fn(match): | |
return replacers[match.group(0).lower()] | |
# Apply the regex to the caption | |
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) | |
# If the caption was modified, return the modified version; otherwise, return the original | |
return modified_caption if modified_caption != caption else caption | |
def fl_run_example(image): | |
task_prompt = "<DESCRIPTION>" | |
prompt = task_prompt + "Describe this image in great detail." | |
# Ensure the image is in RGB mode | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device) | |
generated_ids = fl_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
num_beams=3 | |
) | |
generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) | |
return fl_modify_caption(parsed_answer["<DESCRIPTION>"]) | |
def predict_tags_fl2_sd3(image: Image.Image, input_tags: str, algo: list[str]): | |
def to_list(s): | |
return [x.strip() for x in s.split(",") if not s == ""] | |
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
if not "Use Florence-2-SD3-Long-Captioner" in algo: | |
return input_tags | |
tag_list = list_uniq(to_list(input_tags) + to_list(fl_run_example(image) + ", ")) | |
tag_list.remove("") | |
return ", ".join(tag_list) | |