Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
from salad.model_components.transformer import TimeMLP | |
class TimePointwiseLayer(nn.Module): | |
def __init__( | |
self, | |
dim_in, | |
dim_ctx, | |
mlp_ratio=2, | |
act=F.leaky_relu, | |
dropout=0.0, | |
use_time=False, | |
): | |
super().__init__() | |
self.use_time = use_time | |
self.act = act | |
self.mlp1 = TimeMLP( | |
dim_in, dim_in * mlp_ratio, dim_in, dim_ctx, use_time=use_time | |
) | |
self.norm1 = nn.LayerNorm(dim_in) | |
self.mlp2 = TimeMLP( | |
dim_in, dim_in * mlp_ratio, dim_in, dim_ctx, use_time=use_time | |
) | |
self.norm2 = nn.LayerNorm(dim_in) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, ctx=None): | |
res = x | |
x = self.mlp1(x, ctx=ctx) | |
x = self.norm1(x + res) | |
res = x | |
x = self.mlp2(x, ctx=ctx) | |
x = self.norm2(x + res) | |
return x | |
class TimePointWiseEncoder(nn.Module): | |
def __init__( | |
self, | |
dim_in, | |
dim_ctx=None, | |
mlp_ratio=2, | |
act=F.leaky_relu, | |
dropout=0.0, | |
use_time=True, | |
num_layers=6, | |
last_fc=False, | |
last_fc_dim_out=None, | |
): | |
super().__init__() | |
self.last_fc = last_fc | |
if last_fc: | |
self.fc = nn.Linear(dim_in, last_fc_dim_out) | |
self.layers = nn.ModuleList( | |
[ | |
TimePointwiseLayer( | |
dim_in, | |
dim_ctx=dim_ctx, | |
mlp_ratio=mlp_ratio, | |
act=act, | |
dropout=dropout, | |
use_time=use_time, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def forward(self, x, ctx=None): | |
for i, layer in enumerate(self.layers): | |
x = layer(x, ctx=ctx) | |
if self.last_fc: | |
x = self.fc(x) | |
return x | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |