salad-demo / salad /model_components /variance_schedule.py
DveloperY0115's picture
init repo
801501a
import torch
import numpy as np
from torch.nn import Linear, Module
class VarianceSchedule(Module):
def __init__(self, num_steps, beta_1, beta_T, mode="linear"):
super().__init__()
# assert mode in ("linear",)
self.num_steps = num_steps
self.beta_1 = beta_1
self.beta_T = beta_T
self.mode = mode
if mode == "linear":
betas = torch.linspace(beta_1, beta_T, steps=num_steps)
elif mode == "quad":
betas = torch.linspace(beta_1 ** 0.5, beta_T ** 0.5, num_steps) ** 2
elif mode == "cosine":
cosine_s = 8e-3
timesteps = torch.arange(num_steps + 1) / num_steps + cosine_s
alphas = timesteps / (1 + cosine_s) * np.pi / 2
alphas = torch.cos(alphas).pow(2)
betas = 1 - alphas[1:] / alphas[:-1]
betas = betas.clamp(max=0.999)
betas = torch.cat([torch.zeros([1]), betas], dim=0) # Padding
alphas = 1 - betas
log_alphas = torch.log(alphas)
for i in range(1, log_alphas.size(0)): # 1 to T
log_alphas[i] += log_alphas[i - 1]
alpha_bars = log_alphas.exp()
sigmas_flex = torch.sqrt(betas)
sigmas_inflex = torch.zeros_like(sigmas_flex)
for i in range(1, sigmas_flex.size(0)):
sigmas_inflex[i] = ((1 - alpha_bars[i - 1]) / (1 - alpha_bars[i])) * betas[
i
]
sigmas_inflex = torch.sqrt(sigmas_inflex)
self.register_buffer("betas", betas)
self.register_buffer("alphas", alphas)
self.register_buffer("alpha_bars", alpha_bars)
self.register_buffer("sigmas_flex", sigmas_flex)
self.register_buffer("sigmas_inflex", sigmas_inflex)
def uniform_sample_t(self, batch_size):
ts = np.random.choice(np.arange(1, self.num_steps + 1), batch_size)
return ts.tolist()
def get_sigmas(self, t, flexibility):
assert 0 <= flexibility and flexibility <= 1
sigmas = self.sigmas_flex[t] * flexibility + self.sigmas_inflex[t] * (
1 - flexibility
)
return sigmas